In the traditional linked simulation-optimization method, solving the optimization model requires massive invoking of the groundwater numerical simulation model, which causes a huge computational load. In the present study, a surrogate model of the origin simulation model was developed using a Bidirectional Long and Short-term Memory neural network method (BiLSTM). Compared with the surrogate models built by shallow learning methods (BP neural network) and traditional LSTM methods, the surrogate model built by BiLSTM has higher accuracy and better generalization performance while reducing the computational load. The BiLSTM surrogate model was linked to the optimization model and solved using the Sparrow Search Algorithm based on Sobol sequences (SSAS). SSAS enhances the diversity of the initial population of sparrows by introducing Sobol sequences and introduces nonlinear inertia weights to control the search range and search efficiency. Compared with SSA, SSAS has stronger global search ability and faster search efficiency. And SSAS identifies the contamination source location and release intensity stably and reliably. This study also applied the Cholesky decomposition method to establish a Gaussian field for hydraulic conductivity to evaluate the feasibility of the simulation-optimization method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.