Background For liver cancer patients, the occurrence of postoperative complications increases the difficulty of perioperative nursing, prolongs the hospitalization time of patients, and leads to large increases in hospitalization costs. The ability to identify influencing factors and to predict the risk of complications in patients with liver cancer after surgery could assist doctors to make better clinical decisions. Objective The aim of the study was to develop a postoperative complication risk prediction model based on machine learning algorithms, which utilizes variables obtained before or during the liver cancer surgery, to predict when complications present with clinical symptoms and the ways of reducing the risk of complications. Methods The study subjects were liver cancer patients who had undergone liver resection. There were 175 individuals, and 13 variables were recorded. 70% of the data were used for the training set, and 30% for the test set. The performance of five machine learning models, logistic regression, decision trees-C5.0, decision trees-CART, support vector machines, and random forests, for predicting postoperative complication risk in liver resection patients were compared. The significant influencing factors were selected by combining results of multiple methods, based on which the prediction model of postoperative complications risk was created. The results were analyzed to give suggestions of how to reduce the risk of complications. Results Random Forest gave the best performance from the decision curves analysis. The decision tree-C5.0 algorithm had the best performance of the five machine learning algorithms if ACC and AUC were used as evaluation indicators, producing an area under the receiver operating characteristic curve value of 0.91 (95% CI 0.77–1), with an accuracy of 92.45% (95% CI 85–100%), the sensitivity of 87.5%, and specificity of 94.59%. The duration of operation, patient’s BMI, and length of incision were significant influencing factors of postoperative complication risk in liver resection patients. Conclusions To reduce the risk of complications, it appears to be important that the patient's BMI should be above 22.96 before the operation, and the duration of the operation should be minimized.
Background. Cerebrovascular disease has been the leading cause of death in China since 2017, and the control of medical expenses for these diseases is an urgent issue. Diagnosis-related groups (DRG) are increasingly being used to decrease the costs of healthcare worldwide. However, the classification variables and rules used vary from region to region. Of these variables, the question of whether the length of stay (LOS) should be used as a grouping variable is controversial. Aim. To identify the factors influencing inpatient medical expenditure in cerebrovascular disease patients. The performance of two sets of classification rules, and the effects of the extent of control of unreasonable medical treatment, were compared, to investigate whether the classification variables should include LOS. Methods. Data from 45,575 inpatients from a Healthcare Security Administration of a city in western China were used. Kruskal–Wallis H tests were used for single-factor analysis, and multiple linear stepwise regression was used to determine the main factors. A chi-squared automatic interaction detector (CHAID) algorithm was built as a decision tree model for grouping related data. The intensity of oversupply of service was controlled step by step from 10% to 100%, and the performance was calculated for each group. Results. The average hospitalization cost was 1,284 US dollars, and the total was 51.17 million US dollars. Of this, 43.42 million were paid by the government, and 7.75 million were paid by individuals. Factors including gender, age, type of insurance, level of hospital, LOS, surgery, therapeutic outcomes, main concomitant disease, and hypertension significantly influenced inpatient expenditure ( P < 0.05 ). Incorporating LOS, the patients were divided into seven DRG groups, while without LOS, the patients were divided into eight DRG groups. More clinical variables were needed to achieve good results without LOS. Of the two rule sets, smaller coefficient of variation (CV) and a lower upper limit for patient costs were found in the group including LOS. Using this type of economic control, 3.35 million US dollars could be saved in one year.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.