Magmatic-hydrothermal ore deposits in collisional orogens are new targets for modern mineral exploration, yet it is unclear why they preferentially occur in some specific tectonic environments within these orogenic belts. We integrate geologic and geochemical data (especially zircon U-Pb dating and Lu-Hf isotope data) for Mesozoic-Cenozoic magmatic rocks and associated ore deposits in the Lhasa terrane, a highly endowed tectonic unit within the Himalayan-Tibetan orogen, and provide the first example in a continental collision terrane of the application of zircon Hf isotope data to image the lithospheric architecture and its relationship with ore deposits.Three crustal blocks are identified within the Lhasa terrane by the Hf isotope mapping method. They include a central long-lived Precambrian microcontinent with local reworking and two surrounding juvenile Phanerozoic crustal blocks with significant mantle contributions to constituent magmatic rocks. The three crustal blocks are bounded by two E-W-trending terrane-boundary faults, and each block is cut by two N-S-striking concealed faults. Isotopic signatures of zircons from the juvenile crustal blocks indicate that the Phanerozoic continental crust grew from several Mesozoic volcanic-plutonic arcs and by underplating of mantle-derived magmas generated during Mesozoic accretion and Cenozoic collision.Mesozoic subduction-related porphyry Cu-Au deposits and Cenozoic collision-related Cu-Mo deposits are exclusively located in regions with high eHf (>5) juvenile crust. Cu enrichment during differentiation of high fO 2 arc magmas is the key for the formation of Mesozoic subduction-related porphyry Cu-Au. By contrast, remelting of the lower crustal Cu sulfide-rich magmatic cumulates within the juvenile crust is interpreted to have played a key role in the formation of Cenozoic collision-related Cu-Mo deposits.Granite-related Pb-Zn deposits cluster in the oldest crustal regions or developed along the margin of the old crustal block bounded by lithospheric faults. The porphyry Mo deposits are localized along the reworked margins of the old crustal block. It is suggested that crustal reworking released Mo from the old crust to form porphyry Mo deposits, whereas leaching of Pb and Zn from the Paleozoic carbonate cover strata by felsic intrusion-driven fluids is critical to the formation of Pb-Zn ore deposits.Skarn Fe-Cu ore deposits are typically localized along a terrane boundary fault, i.e., lithospheric discontinuity, through which crust-derived felsic melt mixed with Cu-rich mantle-derived mafic magmas ascending upward. Associated granitoid rocks usually bear microgranular mafic enclaves and show a zircon Hf isotope array from negative to positive eHf values (-7.3 to +6.7), supporting mixing of juvenile mantle and evolved crustal sources.The Hf isotope maps show temporal-spatial relationships between crustal structure and the location of ore deposits, demonstrating that the structure, nature, and composition of the crust controlled the localization of ore deposits and ...
The genesis of continental collision-related porphyry Cu deposits (PCDs) remains controversial. The most common hypothesis links their genesis with magmas derived from subduction-modified arc lithosphere. However, it is unclear whether a genetic linkage exists between collision-and subduction-related PCDs. Here, we studied Jurassic subduction-related Cu-Au and Miocene collision-related Cu-Mo porphyry deposits in south Tibet. The Jurassic PCDs occur only in the western segment of the Jurassic arc, which has depleted mantle-like isotopic compositions [e.g., (87 Sr/ 86 Sr) i = 0.7041-0.7048; e Nd(t) as high as 7.5, and e Hf(t) as high as 18]. By contrast, no Jurassic PCDs have been found in the eastern arc segment, which is isotopically less juvenile [e.g., (87 Sr/ 86 Sr) i = 0.7041-0.7063, e Nd(t) < 4.5, and e Hf(t) ≤ 12]. These results imply that incorporation of crustal components during underplating of Jurassic magma induced copper accumulation as sulfides at the base of the eastern Jurassic arc, inhibiting PCD formation at this time. Miocene PCDs are spatially confined to the Jurassic arc, and the giant Miocene PCDs cluster in its eastern segment where no Jurassic PCDs occur. This suggests that the arc segment barren for subduction-related PCDs could be fertile for collision-related PCDs. Miocene ore-forming porphyries have young Hf model ages and Sr-Nd-Hf isotopic compositions overlapping with those of the Jurassic rocks in the eastern segment, whereas contemporaneous barren porphyries outside the Jurassic arc have abundant zircon inheritance and crustlike Sr-Nd-Hf isotopic compositions. These data suggest that remelting of the lower crustal sulfide-bearing Cu-rich Jurassic cumulates, triggered by Cenozoic crustal thickening and/or subsequent slab break-off, led to the formation of giant Miocene PCDs. The spatial overlap and complementary metal endowment between subduction-and collision-related magmas may be used to evaluate the mineral potential for such deposits in other orogenic belts.
Recent studies argue that subduction-modified, Cu-fertilized lithosphere controls the formation of porphyry Cu deposits in orogenic belts. However, it is unclear if and how this fertilization process operates at cratonic edges, where numerous large non-arc Au-rich deposits form. Here we report data from lower crustal amphibolite and garnet amphibolite xenoliths hosted by Cenozoic stocks that are genetically related to the Beiya Au-rich porphyry deposits along the western margin of the Yangtze craton, China. These xenoliths are thought to represent cumulates or residuals of Neoproterozoic arc magmas ponding at the base of arc at the edge of the craton that subsequently underwent high-pressure metamorphism ca. 738 Ma. The amphibolite xenoliths are enriched in Cu (383-445 ppm) and Au (7-12 ppb), and a few garnet amphibolite xenoliths contain higher Au (6-16 ppb) with higher Au/Cu ratios (2 × 10 −4 to 8 × 10 −4 ) than normal continental crust. These data suggest that metal fertilization of the base of an old arc at the edge of the craton occurred in the Neoproterozoic via subduction modification, and has since been preserved. The whole-rock geochemical and zircon Hf isotopic data indicate that melting of the Neoproterozoic Cu-Au-fertilized low-crustal cumulates at 40-30 Ma provided the metal endowment for the Au-rich porphyry system at the cratonic edge. We therefore suggest that the reactivated cratonic edges, triggered by upwelling of asthenosphere, have the potential to host significant Au ore-forming systems, especially non-arc Au-rich porphyry deposits. LOWER CRUSTAL XENOLITHS AND THEIR ORIGINAbundant xenoliths have been found with Eocene stocks and associated volcanic rocks at six locations exposed along the cratonic edge (Fig. 1B). Amphibolites and garnet amphibolites are the primary types, the former hosted by Liuhe syenites and Beiya monzogranite porphyries ( Fig. 2A), and the latter widely occurring in the Liuhe stock (Fig. 2B). Their mineralogical and whole-rock compositions, and zircon, oxide, and sulfide geochemical *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.