As major components of the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play an exceedingly complicated role in tumor progression and tumorigenesis. However, few studies have reported the specific TAM gene signature in bladder cancer. Herein, this study focused on developing a TAM-related prognostic model in bladder cancer patients based on The Cancer Genome Atlas (TCGA) data. Weighted Gene Co-Expression Network Analysis (WGCNA) was used to identify key genes related to TAM (M2 macrophage). Gene ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis showed the functional categories of the key genes. Simultaneously, we used the Least Absolute Shrinkage and Selection Operator (LASSO) and univariate and multivariate Cox regressions to establish a TMA-related prognostic model containing six key genes: TBXAS1, GYPC, HPGDS, GAB3, ADORA3, and FOLR2. Subsequently, single-cell sequencing data downloaded from Gene Expression Omnibus (GEO) suggested that the six genes in the prognostic model were expressed in TAM specifically and may be involved in TAM polarization. In summary, our research uncovered six-TAM related genes that may have an effect on risk stratification in bladder cancer patients and could be regarded as potential TAM-related biomarkers.
Protoplasts, which lack cell walls, are ideal research materials for genetic engineering. They are commonly employed in fusion (they can be used for more distant somatic cell fusion to obtain somatic hybrids), genetic transformation, plant regeneration, and other applications. Cotton is grown throughout the world and is the most economically important crop globally. It is therefore critical to study successful extraction and transformation efficiency of cotton protoplasts. In the present study, a cotton callus protoplast extraction method was tested to optimize the ratio of enzymes (cellulase, pectinase, macerozyme R-10, and hemicellulase) used in the procedure. The optimized ratio significantly increased the quantity and activity of protoplasts extracted. We showed that when enzyme concentrations of 1.5% cellulase and 1.5% pectinase, and either 1.5% or 0.5% macerozyme and 0.5% hemicellulase were used, one can obtain increasingly stable protoplasts. We successfully obtained fluorescent protoplasts by transiently expressing fluorescent proteins in the isolated protoplasts. The protoplasts were determined to be suitable for use in further experimental studies. We also studied the influence of plasmid concentration and transformation time on protoplast transformation efficiency. When the plasmid concentration reaches 16 µg and the transformation time is controlled within 12–16 h, the best transformation efficiency can be obtained. In summary, this study presents efficient extraction and transformation techniques for cotton protoplasts.
Background Osthole was traditionally used in treatment for various diseases. However, few studies had demonstrated that osthole could suppress bladder cancer cells and its mechanism was unclear. Therefore, we performed a research to explore the potential mechanism for osthole against bladder cancer. Methods Internet web servers SwissTargetPrediction, PharmMapper, SuperPRED, and TargetNet were used to predict the Osthole targets. GeneCards and the OMIM database were used to indicate bladder cancer targets. The intersection of two target gene fragments was used to obtain the key target genes. Protein–protein interaction (PPI) analysis was performed using the Search Tool for the Retrieval of Interacting Genes (STRING) database. Furthermore, we used gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses to explore the molecular function of target genes. AutoDock software was then used to perform molecular docking of target genes,osthole and co-crystal ligand. Finally, an in vitro experiment was conducted to validate bladder cancer inhibition by osthole. Results Our analysis identified 369 intersection genes for osthole, the top ten target genes included MAPK1, AKT1, SRC, HRAS, HASP90AA1, PIK3R1, PTPN11, MAPK14, CREBBP, and RXRA. The GO and KEGG pathway enrichment results revealed that the PI3K-AKT pathway was closely correlated with osthole against bladder cancer. The osthole had cytotoxic effect on bladder cancer cells according to the cytotoxic assay. Additionally, osthole blocked the bladder cancer epithelial-mesenchymal transition and promoted bladder cancer cell apoptosis by inhibiting the PI3K-AKT and Janus kinase/signal transducer and activator of transcription (JAK/STAT3) pathways. Conclusions We found that osthole had cytotoxic effect on bladder cancer cells and inhibited invasion, migration, and epithelial-mesenchymal transition by inhibiting PI3K-AKT and JAK/STAT3 pathways in in vitro experiment. Above all, osthole might have potential significance in treatment of bladder cancer. Subjects Bioinformatics, Computational Biology, Molecular Biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.