BackgroundThe global rising prevalence and incidence of multiple sclerosis (MS) has been reported during the past decades. However, details regarding the evolution of MS burden have not been fully studied. This study aimed to investigate the global, regional, and national burden and temporal trends in MS incidence, deaths, and disability-adjusted life years (DALYs) from 1990 to 2019 using the age-period-cohort analysis.MethodsWe performed a secondary comprehensive analysis of incidence, deaths, and DALYs of MS by calculating the estimated annual percentage change from 1990 to 2019 obtained from the Global Burden of Disease (GBD) 2019 study. The independent age, period, and birth cohort effects were evaluated by an age-period-cohort model.ResultsIn 2019, there were 59,345 incident MS cases and 22,439 MS deaths worldwide. The global number of incidences, deaths, and DALYs of MS followed an upward trend, whereas the age-standardized rates (ASR) slightly declined from 1990 to 2019. High socio-demographic index (SDI) regions had the highest ASR of incidences, deaths, and DALYs in 2019, while the rate of deaths and DALYs in medium SDI regions are the lowest. Six regions which include high-income North America, Western Europe, Australasia, Central Europe, and Eastern Europe had higher ASR of incidences, deaths, and DALYs than other regions in 2019. The age effect showed that the relative risks (RRs) of incidence and DALYs reached the peak at ages 30–39 and 50–59, respectively. The period effect showed that the RRs of deaths and DALYs increased with the period. The cohort effect showed that the later cohort has lower RRs of deaths and DALYs than the early cohort.ConclusionThe global cases of incidence, deaths, and DALYs of MS have all increased, whereas ASR has declined, with different trends in different regions. High SDI regions such as European countries have a substantial burden of MS. There are significant age effects for incidence, deaths, and DALYs of MS globally, and period effects and cohort effects for deaths and DALYs.
Purpose: Hyperopic surprises tend to occur in axial myopic eyes and other factors including corneal curvature have rarely been analyzed in cataract surgery, especially in eyes with long axial length (≥ 26.0 mm). Thus, the purpose of our study was to evaluate the in uence of keratometry on four different formulas (SRK/T, Barrett Universal II, Haigis and Olsen) in intraocular lens (IOL) power calculation for long eyes. Methods: Retrospective case-series. 180 eyes with axial length (AL) ≥ 26.0 mm were divided into 3 keratometry (K) groups: K ≤ 42.0 D (Flat), K ≥ 46.0 D (Steep), 42.0 < K < 46.0 D (Average). Prediction errors (PE) were compared between different formulas. Multiple regression analysis was performed to investigate factors associated with the PE. Results: The mean absolute error was higher for all evaluated formulas in Steep group (ranging from 0.66 D to 1.02 D) than the Flat (0.34 D to 0.67 D) and Average groups (0.40 D to 0.74D). The median absolute errors predicted by Olsen formula were signi cantly lower than that predicted by Haigis formula (0.42 D versus 0.85 D in Steep and 0.29 D versus 0.69 D in Average) in Steep and Average groups (P = 0.012, P < 0.001, respectively). And the Olsen formula demonstrated equal accuracy to the Barrett II formula in Flat and Average groups. The predictability of the SRK/T formula was affected by the AL and K, while the predictability of Olsen and Haigis formulas was affected by the AL only. Conclusions: Steep cornea has more in uence on the accuracy of IOL power calculation than the other corneal shape in long eyes. Overall, both the Olsen and Barrett Universal II formulas are recommended in long eyes with unusual keratometry.
Objective: To evaluate the accuracy of different intraocular lens (IOL) power calculation formulas and develop prognostic nomograms to predict the risk of postoperative refractive error in primary angle-closure glaucoma (PACG) patients.Methods: A total of 111 eyes with PACG underwent goniosynechialysis combined with phacoemulsification and IOL implantation were included. SRK/T, Barrett II, Hoffer Q, and Kane formulas were used to predict postoperative refraction. Prediction error (PE) and absolute predictive error (APE) produced by the four formulas were calculated and compared. An APE >0.50 D was defined as the event. Binary logistic regression analysis and prognostic nomogram models were conducted to investigate reliable predictors associated with postoperative refraction.Results: The Kane (−0.06 D) and Barrett II (−0.07 D) formulas had mean prediction error close to zero (p = 0.44, p = 0.41, respectively). The Hoffer Q and SRK/T produced significantly myopic outcomes (p = 0.003, p = 0.013, respectively). The percentage of eyes within ± 0.5 D was 49.5% (55/111), 44.1% (49/111), 43.2% (48/111), and 49.5% (54/111), for the Kane, Barrett II, Hoffer Q, and SRK/T formula, respectively. Nomogram showed that AL had the greatest impact on the refractive outcomes, indicating a shorter preoperative AL is associated with a greater probability of refractive error event. The area under the receiver operator curve (AUC) of the nomogram for the Kane, Barrett II, Hoffer Q, and SRK/T was 0.690, 0.701, 0.708, and 0.676, respectively.Conclusions: The Kane and Barrett II formulas were comparable, and they outperformed Hoffer Q and SRK/T in the total eyes with PACG receiving cataract surgery combined with goniosynechialysis. The developed nomogram models can effectively predict the occurrence of postoperative refractive error events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.