Introduction: There has been a rapid development of deep learning (DL) models for medical imaging. However, DL requires a large labeled dataset for training the models. Getting large-scale labeled data remains a challenge, and multi-center datasets suffer from heterogeneity due to patient diversity and varying imaging protocols. Domain adaptation (DA) has been developed to transfer the knowledge from a labeled data domain to a related but unlabeled domain in either image space or feature space. DA is a type of transfer learning (TL) that can improve the performance of models when applied to multiple different datasets. Objective: In this survey, we review the state-of-the-art DL-based DA methods for medical imaging. We aim to summarize recent advances, highlighting the motivation, challenges, and opportunities, and to discuss promising directions for future work in DA for medical imaging. Methods: We surveyed peer-reviewed publications from leading biomedical journals and conferences between 2017-2020, that reported the use of DA in medical imaging applications, grouping them by methodology, image modality, and learning scenarios. Results: We mainly focused on pathology and radiology as application areas. Among various DA approaches, we discussed domain transformation (DT) and latent feature-space transformation (LFST). We highlighted the role of unsupervised DA in image segmentation and described opportunities for future development. Conclusion: DA has emerged as a promising solution to deal with the lack of annotated training data. Using adversarial techniques, unsupervised DA has achieved good performance, especially for segmentation tasks. Opportunities include domain transferability, multi-modal DA, and applications that benefit from synthetic data.
Researchers seek help from deep learning methods to alleviate the enormous burden of reading radiological images by clinicians during the COVID-19 pandemic. However, clinicians are often reluctant to trust deep models due to their black-box characteristics. To automatically differentiate COVID-19 and community-acquired pneumonia from healthy lungs in radiographic imaging, we propose an explainable attention-transfer classification model based on the knowledge distillation network structure. The attention transfer direction always goes from the teacher network to the student network. Firstly, the teacher network extracts global features and concentrates on the infection regions to generate attention maps. It uses a deformable attention module to strengthen the response of infection regions and to suppress noise in irrelevant regions with an expanded reception field. Secondly, an image fusion module combines attention knowledge transferred from teacher network to student network with the essential information in original input. While the teacher network focuses on global features, the student branch focuses on irregularly shaped lesion regions to learn discriminative features. Lastly, we conduct extensive experiments on public chest X-ray and CT datasets to demonstrate the explainability of the proposed architecture in diagnosing COVID-19.
Despite the myriad peer-reviewed papers demonstrating novel Artificial Intelligence (AI)-based solutions to COVID-19 challenges during the pandemic, few have made a significant clinical impact, especially in diagnosis and disease precision staging. One major cause for such low impact is the lack of model transparency, significantly limiting the AI adoption in real clinical practice. To solve this problem, AI models need to be explained to users. Thus, we have conducted a comprehensive study of Explainable Artificial Intelligence (XAI) using PRISMA technology. Our findings suggest that XAI can improve model performance, instill trust in the users, and assist users in decisionmaking. In this systematic review, we introduce common XAI techniques and their utility with specific examples of their application. We discuss the evaluation of XAI results because it is an important step for maximizing the value of AI-based clinical decision support systems. Additionally, we present the traditional, modern, and advanced XAI models to demonstrate the evolution of novel techniques. Finally, we provide a best practice guideline that developers can refer to during the model experimentation. We also offer potential solutions with specific examples for common challenges in AI model experimentation. This comprehensive review, hopefully, can promote AI adoption in biomedicine and healthcare.
Heart transplant rejection is one major threat for the survival of patients with a heart transplant. Endomyocardial biopsies are effective in showing signs of heart transplant rejection even before patients have any symptoms. Manually examining the tissue samples is costly, time-consuming and error-prone. With recent advances in deep learning (DL) based image processing methods, automatic training and prediction on heart transplant rejection using whole-slide images expect to be promising. This paper develops an advanced pipeline for quality control, feature extraction, clustering and classification. We first implement a stacked convolutional autoencoder to extract feature maps for each tile; we then incorporate multiple instance learning (MIL) with dimensionality reduction and unsupervised clustering prior to classification. Our results show that utilizing unsupervised clustering after feature extraction can achieve higher classification results while preserving the capability for multi-class classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.