Up-regulation of miR-422a attenuated microsphere formation, proliferation and tumor formation of breast cancer stem cells via suppressing the PLP2 expression.
The surface/interface matters as the size of materials enters the nanoscale. Control of surface/interface, therefore, plays an important role in creating novel nanostructures with unusual properties and in obtaining devices with high performance. Herein, we demonstrate unique interface regulation in fabricating nanostructures with strong plasmonic circular dichroism (PCD). With chiral cysteine (Cys) as surface-modulating molecules, starfruit-like Au nanoparticles (NPs) with high PCD responses are obtained via Au overgrowth on Au nanorods (AuNRs). Pre-incubation of the AuNRs with Cys is vital in achieving strong and reproducible PCD responses. Instead of contributing to PCD signals, the pre-adsorbed Cys molecules are found to play a major role in manipulating the Au growth mode and thus the formation of hotspots within the shell. Strong PCD signal mainly comes from the entrapped Cys molecules within the hotspots and is enhanced via local field effect. The distinct roles of the same ligands at different surfaces/interfaces are elucidated. Furthermore, our findings contribute to the strategy of utilizing interface modulation to fabricate complex nanostructures with novel properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.