The investigation on geopolymers has intrigued broad interests in the past decades, due to the requirements for the recycling of aluminosilicate solid wastes, such as red mud, slags, sludges and demolished concrete. Previous studies have demonstrated the feasibility of reusing this Aluminosilicate as a resource to prepare cementitious materials and indicated their promising properties at ambient temperature. However, when this material was exposed to high temperatures, especially above 1000 °C, the microstructure evolution mechanisms were not systematically investigated. In this study, the microstructural evolution process of metakaolin-based K geopolymer (molar ratio of K:Al:Si was 1:1:4) is investigated. The crystalized leucite originated from the geopolymer precursor was detected above 1000 °C. The SEM results indicate that the microstructure of the geopolymer before heating was composed of non-reacted metakaolin with a typical layered structure and reacted amorphous binder phase. As the geopolymer heated to 1000 °C, the microstructure of the geopolymer changed to a porous structure with an average pore size from 10 to 30 μm. When the heating temperature reached 1100 °C, the pores started to close along with the leucite crystallization process. As the heating temperature reached 1200 °C, most of the pores were closed. The TEM results show that the microstructure of the geopolymer, after being heated to 1400 °C, was composed of an amorphous glassy phase and crystallized leucite phase. The crystallized leucite grains originated from the nano-sized crystal nuclei, with an average size of 2–3 nm. The TEM-EDS results indicate that the chemical composition of the glassy phase was complicated. It varied from area to area because of the movement and uneven distribution of K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.