Intercropping is an important agronomic practice adopted to increase crop production and resource efficiency in areas with intensive agricultural production. Two sequential field trials were conducted in 2015–2016 to investigate the effect of shading on the morphological features, leaf structure, and photosynthetic characteristics of soybean in a maize-soybean relay-strip intercropping system. Three treatments were designed on the basis of different row configurations A1 (“50 cm + 50 cm” one row of maize and one row of soybean with a 50 cm spacing between the rows), A2 (“160 cm + 40 cm” two rows of maize by wide-narrow row planting, where two rows of soybean were planted in the wide rows with a width of 40 cm, and with 60 cm row spacing was used between the maize and soybean rows), and CK (sole cropping of soybean, with 70 cm rows spacing). Results showed that the photosynthetically active radiation transmittances of soybean canopy at V5 stage under A2 treatment (31.1%) were considerably higher than those under A1 (8.7%) treatment, and the red-to-far-red ratio was reduced significantly under A1 (0.7) and A2 (1.0) treatments compared with those under CK (1.2). By contrast with CK, stem diameter, total aboveground biomass, chlorophyll content and net photosynthetic rate decreased significantly except plant height under A1 and A2. The thickness of palisade tissue and spongy tissue of soybean leaf under A1 and A2 were significantly reduced at V5 stage compared with CK. The leaf thicknesses under A1 and A2 were lower than those in CK by 39.5% and 18.2%, respectively. At the R1 stage of soybean (after maize harvest), the soybean plant height, stem biomass, leaf biomass and petiole biomass under A1 and A2 treatments were still significantly lower than those under CK, but no significant differences were observed in Chl a/b, Pn, epidermis thickness and spongy tissue thickness of soybean leaves in A2 compared with CK. In addition, the soybean yields (g plant-1) under A1 and A2 were 54.69% and 16.83% lower than those in CK, respectively. These findings suggested that soybean plants can regulate its morphological characteristics and leaf anatomical structures under different light environments.
The intensity and quality (red to far-red (R/Fr) ratio) of light directly affect growth of plant under shading. Gibberellins (GAs) and auxin [indole-3-acetic acid (IAA)] play important roles in mediating the shading adaptive responses of plants. Thus, the intensity and quality of the uncoupling light from shading were assessed to identify the influence of each component on the morphology and matter distribution of the leaf, stem, and petiole. This assessment was based on the changes in endogenous Gibberellin 1 (GA1) and IAA levels. Soybean plants were grown in a growth chamber with four treatments [normal (N), N+Fr, low (L), and L+Fr light]. Results revealed that the reductions in photosynthetically active radiation (PAR) and R/Fr ratio equally increased height and stem mass fractions (SMFs) of the soybean seedling. The light intensity significantly influenced the dry mass per unit area and mass fraction of soybean leaves, whereas the light quality regulated the petiole elongation and mass fraction. Low R/Fr ratio (high Fr light) increased the soybean biomass by improving the photosynthetic assimilation rate and quantum yield of photosystem II. In addition, the IAA and GA1 levels in the leaf, stem, and petiole did not reflect the growth response trends of each tissue toward light intensity and quality; however, trends of the IAA-to-GA1 content ratios were similar to those of the growth and matter allocation of each soybean tissue under different light environments. Therefore, the response of growth and matter allocation of soybean to light intensity and quality may be regulated by the IAA-to-GA1 content ratio in the tissues of the soybean plant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.