This paper presents a numerical investigation on the combined influences of film cooling and thermal barrier coatings (TBCs) on the cooling performances of a NASA C3X guide vane. The results show that: (1) film cooling on the pressure side is more effective than suction side, especially on the trailing edge where multiple cooling and thermal protection techniques include internal cooling and TBCs are necessary. (2) TBCs show positive and negative roles in improving cooling performance at the same time for the coated vane with or without film cooling. Without film cooling, TBCs show negative roles on the regions with lower temperature external hot gas, which is caused by flow acceleration from the stagnation line of the suction side. (3) Internal cooling improvement caused by coolant introduction leads to a larger cooling effectiveness inclement due to TBCs near coolant plenums and film cooling holes. However, the influence of TBCs on cooling effectiveness increment goes down and even shows negative roles on the regions away from coolant plenums and under the effective coverage of the film cooling. (4) Improving the convective heat transfer of coolant with the wall of coolant plenums and film cooling holes is the guarantee of improving the cooling performance of a coated vane.
An efficient synthesis of N-aryl 2-quinolinones via K2S2O8-mediated intramolecular C(sp2)–H amidation of Knoevenagel products was developed.
This paper studied the combined influences of the hot streak and swirl on the cooling performances of the NASA C3X guide vane coated with or without thermal barrier coatings (TBCs). The results show that: (1) Even under uniform velocity inlet conditions, the hot streak core can be stretched as it impinges the leading edge which causes higher heat load on the suction side of the forward portion. (2) The swirl significantly affects circumferential and radial migration of the hot streak core in the NGV passage. On the passage inlet plane, positive swirl leads to a hotter tip region on the suction side. In comparison, negative swirl leads to a hotter hub region on the pressure side. (3) Under the influence of swirl, migration of coolant improves the coverage of film cooling close to the midspan, while in the regions close to the hub and tip end-wall, the overall cooling performance decreases simultaneously. (4) In the regions with enough internal cooling, the cooling effectiveness increment is always larger than that in other regions. Besides, the overall cooling effectiveness increment decreases on the region covered by film cooling for the coated vane, especially in the region with negative local heat flux.
Background Alcohol-induced hangover represents a significant, yet understudied, global hazard and a large socio-economic burden. Objectives The aim of this study was to investigate the effects of hydrogen (H2) on relieving drinking and hangover symptoms in 20 healthy volunteers. Methods In this pilot, randomized, double-blinded, placebo-controlled, matched, crossover interventional trial, participants were matched into pairs and randomly assigned. Study group 1 inhaled placebo air for 1 hr, followed by drinking 100 ml of liquor (40% alcohol) within 10 min, and then pure water. Study group 2 inhaled a mixture of H2 and O2 gas for 1 hr, followed by drinking 100 ml of liquor within 10 min, and then H2 dissolved in water. On a second intervention day (crossover) ≥1 wk later, study-group subjects were switched to the opposite order. Breath alcohol concentration (BrAC), hangover severity, and cognitive scores were measured. Results The BrACs within the H2 group were significantly lower than those within the placebo group after 30 min, 60 min, and 90 min (P < 0.05). The H2 group reported having fewer hangover symptoms compared with the placebo group (Placebo: 77% of symptoms absent, 19.7% of mild symptoms, 2.7% of moderate symptoms, 0.7% of severe symptoms; H2: 88.6% of symptoms absent, 10% of mild symptoms, 1.3% of moderate symptoms, 0% of severe symptoms; P < 0.001). H2 treatment improved cognitive testing scores (P < 0.05), including attention and executive functions. Furthermore, consumption of H2 was negatively (β = -13.016; 95% CI: -17.726, -8.305; P < 0.001) and female sex was positively (β = 22.611; 95% CI: 16.226, 28.997; P < 0.001) correlated with increased BrACs. Likewise, the consumption of H2 was negatively (OR: 0.035; 95% CI: 0.007, 0.168; P < 0.001) while female sex was positively (OR: 28.838; 95% CI: 5.961, 139.506; P < 0.001) correlated with the severity of hangover symptoms. Conclusions H2 decreases BrACs and relieves the symptoms of hangovers. This trial was registered at China Clinical Trial Registry as ChiCTR2200059988. URL of registration: http://www.chictr.org.cn/showproj.aspx?proj=58359
Hot streaks and rotor–stator interaction have a great influence on the aerothermal performance of turbine blades. Previous investigations have conducted limited study of the film-cooled blade. To investigate the combined effects of a hot streak and rotor–stator interaction on the coated blade, an unsteady numerical simulation has been conducted with an efficient unsteady Navier–Stokes solver in this paper. The numerical results at four different relative stator–rotor locations (t = 0/4 T, 1/4 T, 2/4 T, and 3/4 T) have been investigated in one stator period. Compared with the stator, rotor–stator interaction exerts a significant impact on the cooling performance of the rotor blade under hot streak inlet conditions. The overall cooling effectiveness distribution of the coated rotor blade is similar to that of the uncoated blades in one stator period. Relatively lower overall cooling performance of the rotor blade can be observed in the 1/4 stator period. Then, the cooling performance begins to increase and relatively larger cooling effectiveness can be observed in the 3/4 stator period. The addition of a TBC is generally beneficial to the improvement of blade surface cooling performance, especially for the areas with low overall cooling performance. However, a negative cooling effectiveness increment can be observed at the trailing edge. It shows that for an area with poor cooling performance, the addition of thermal barrier coating will have the opposite effect. Therefore, it is necessary to enhance the design of cooling arrangements at the trailing edge to maximize the insulation performance of TBCs for the coated rotor blade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.