Tripartite motif protein 32, Trim32, mRNA and protein expression was elevated in independently transformed and tumorigenic keratinocytes of a mouse epidermal carcinogenesis model, in ultraviolet B (UVB)-induced squamous cell carcinomas (SCC), and in approximately 20-25% of chemically induced mouse papillomas and human head and neck SCCs. This suggests that elevated Trim32 expression occurs frequently in experimental epidermal carcinogenesis and is relevant to human cancer. Transduced Trim32 increased colony number in an epidermal in vitro transformation assay and epidermal thickening in vivo when skin-grafted to athymic nu/nu mice. These effects were not associated with proliferation and were not sufficient for tumorigenesis, even with 12-O-tetradecanoylphorbol-13-acetate treatment or defects in the tumor suppressor p53. However, transduced Trim32 inhibited the synergistic effect of tumor necrosis factor alpha (TNFalpha) on UVB-induced apoptosis of keratinocytes in vitro and the apoptotic response of keratinocyte grafts exposed to UVB-light in vivo. Consistent with its RING domain, Trim32 exhibited characteristics of E3-ubiquitin ligases, including being ubiquitylated itself and interacting with ubiquitylated proteins, with increases in these properties following treatment of cultured keratinocytes with TNFalpha/UVB. Interestingly, missense point mutation of human TRIM32 has been reported in Limb-Girdle Muscular Dystrophy Type 2H, an autosomal recessive disease. We propose a model in which Trim32 activities as an E3-ubiquitin ligase favor initiated cell survival in carcinogenesis by blocking UVB-induced TNFalpha apoptotic signaling.
The ASPP2 (also known as 53BP2L) tumor suppressor is a proapoptotic member of a family of p53 binding proteins that functions in part by enhancing p53-dependent apoptosis via its C-terminal p53-binding domain. Mounting evidence also suggests that ASPP2 harbors important nonapoptotic p53-independent functions. Structural studies identify a small G protein Ras-association domain in the ASPP2 N terminus. Because Ras-induced senescence is a barrier to tumor formation in normal cells, we investigated whether ASPP2 could bind Ras and stimulate the protein kinase Raf/MEK/ERK signaling cascade. We now show that ASPP2 binds to Ras-GTP at the plasma membrane and stimulates Ras-induced signaling and pERK1/2 levels via promoting Ras-GTP loading, B-Raf/C-Raf dimerization, and C-Raf phosphorylation. These functions require the ASPP2 N terminus because BBP (also known as 53BP2S), an alternatively spliced ASPP2 isoform lacking the N terminus, was defective in binding Ras-GTP and stimulating Raf/MEK/ERK signaling. Decreased ASPP2 levels attenuated H-RasV12-induced senescence in normal human fibroblasts and neonatal human epidermal keratinocytes. Together, our results reveal a mechanism for ASPP2 tumor suppressor function via direct interaction with Ras-GTP to stimulate Ras-induced senescence in nontransformed human cells.
The ␣ 6 integrin is a 140-kDa (nonreduced) laminin receptor. We have identified a novel 70-kDa (nonreduced) form of the ␣ 6 integrin called ␣ 6 p for the latin word parvus, meaning small. The variant was immunoprecipitated from human cells using four different ␣ 6 -specific monoclonal antibodies but not with ␣ 3 or ␣ 5 antibodies. The ␣ 6 p integrin contained identical amino acid sequences within exons 13-25, corresponding to the extracellular "stalk region" and the cytoplasmic tail of the ␣ 6 integrin. The light chains of ␣ 6 and ␣ 6 p were identical as judged by ␣ 6 Aspecific antibodies and electrophoretic properties. The ␣ 6 p variant paired with either  1 or  4 subunits and was retained on the cell surface three times longer than ␣ 6 . Reverse transcription/polymerase chain reaction analysis revealed a single polymerase chain reaction product. The ␣ 6 p variant was found in human prostate (DU145H, LnCaP, PC3) and colon (SW480) cancer cell lines but not in normal prostate (PrEC), breast cancer (MCF-7), or lung cancer (H69) cell lines or a variant of a prostate carcinoma cell line (PC3-N). Protein levels of ␣ 6 p increased 3-fold during calcium-induced terminal differentiation in a normal mouse keratinocyte model system. A novel form of the ␣ 6 integrin exists on cell surfaces that contains a dramatically altered extracellular domain.
Negative regulation of the NF-κB transcription factor is essential for tissue homeostasis in response to stress and inflammation. NF-κB activity is regulated by a variety of biochemical mechanisms including phosphorylation, acetylation, and ubiquitination. In this study, we provide the first experimental evidence that NF-κB is regulated by SUMOylation, where the RelA subunit of NF-κB is SUMOylated by PIAS3, a member of the PIAS (protein inhibitor of activated STAT) protein family with E3 SUMO ligase activity. PIAS3-mediated NF-κB repression was compromised by either RelA mutant resistant to SUMOylation or PIAS3 mutant defective in SUMOylation. PIAS3-mediated SUMOylation of endogenous RelA was induced by NF-κB activation thus forming a negative regulatory loop. The SUMOylation of endogenous RelA was enhanced in IκBα null as compared with wild type fibroblasts. The RelA SUMOylation was induced by TNFα but not leptomycin B mediated RelA nuclear translocation. Furthermore, RelA mutants defective in DNA binding were not SUMOylated by PIAS3, suggesting that RelA DNA binding is a signal for PIAS3-mediated SUMOylation. These results support a novel negative feedback mechanism for NF-κB regulation by PIAS3-mediated RelA SUMOylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.