Objects are often organized in a semantic hierarchy of categories, where finelevel categories are grouped into coarse-level categories according to their semantic relations. While previous works usually only classify objects into the leaf categories, we argue that generating hierarchical labels can actually describe how the leaf categories evolved from higher level coarse-grained categories, thus can provide a better understanding of the objects. In this paper, we propose to utilize the CNN-RNN framework to address the hierarchical image classification task. CNN allows us to obtain discriminative features for the input images, and RNN enables us to jointly optimize the classification of coarse and fine labels. This framework can not only generate hierarchical labels for images, but also improve the traditional leaf-level classification performance due to incorporating the hierarchical information. Moreover, this framework can be built on top of any CNN architecture which is primarily designed for leaf-level classification. Accordingly, we build a high performance network based on the CNN-RNN paradigm which outperforms the original CNN (wider-ResNet) and also the current state-of-the-art. In addition, we investigate how to utilize the CNN-RNN framework to improve the fine category classification when a fraction of the training data is only annotated with coarse labels. Experimental results demonstrate that CNN-RNN can use the coarse-labeled training data to improve the classification of fine categories, and in some cases it even surpasses the performance achieved by fully annotated training data. This reveals that, CNN-RNN can alleviate the challenge of specialized and expensive annotation of fine labels.
Image-based kinship recognition is an important problem in the reconstruction and analysis of social networks. Prior studies on image-based kinship recognition have focused solely on pairwise kinship verification, i.e. on the question of whether or not two people are kin. Such approaches fail to exploit the fact that many real-world photographs contain several family members; for instance, the probability of two people being brothers increases when both people are recognized to have the same father. In this work, we propose a graph-based approach that incorporates facial similarities between all family members in a photograph in order to improve the performance of kinship recognition. In addition, we introduce a database of group photographs with kinship annotations.
Wood anatomy is one of the most important methods for timber identification. However, training wood anatomy experts is time-consuming, while at the same time the number of senior wood anatomists with broad taxonomic expertise is declining. Therefore, we want to explore how a more automated, computer-assisted approach can support accurate wood identification based on microscopic wood anatomy. For our exploratory research, we used an available image dataset that has been applied in several computer vision studies, consisting of 112 — mainly neotropical — tree species representing 20 images of transverse sections for each species. Our study aims to review existing computer vision methods and compare the success of species identification based on (1) several image classifiers based on manually adjusted texture features, and (2) a state-of-the-art approach for image classification based on deep learning, more specifically Convolutional Neural Networks (CNNs). In support of previous studies, a considerable increase of the correct identification is accomplished using deep learning, leading to an accuracy rate up to 95.6%. This remarkably high success rate highlights the fundamental potential of wood anatomy in species identification and motivates us to expand the existing database to an extensive, worldwide reference database with transverse and tangential microscopic images from the most traded timber species and their look-a-likes. This global reference database could serve as a valuable future tool for stakeholders involved in combatting illegal logging and would boost the societal value of wood anatomy along with its collections and experts.
High-throughput imaging is applied to provide observations for accurate statements on phenomena in biology and this has been successfully applied in the domain of cells, i.e. cytomics. In the domain of whole organisms, we need to take the hurdles to ensure that the imaging can be accomplished with a sufficient throughput and reproducibility. For vertebrate biology, zebrafish is a popular model system for high-throughput applications. The development of the Vertebrate Automated Screening Technology (VAST BioImager), a microscope mounted system, enables the application of zebrafish high-throughput screening. The VAST BioImager contains a capillary that holds a zebrafish for imaging. Through the rotation of the capillary, multiple axial-views of a specimen can be acquired. For the VAST BioImager, fluorescence and/or confocal microscopes are used. Quantitation of a specific signal as derived from a label in one fluorescent channel requires insight in the zebrafish volume to be able to normalize quantitation to volume units. However, from the setup of the VAST BioImager, a specimen volume cannot be straightforwardly derived. We present a high-throughput axial-view imaging architecture based on the VAST BioImager. We propose profile-based 3D reconstruction to produce 3D volumetric representations for zebrafish larvae using the axial-views. Volume and surface area can then be derived from the 3D reconstruction to obtain the shape characteristics in high-throughput measurements. In addition, we develop a calibration and a validation of our methodology. From our measurements we show that with a limited amount of views, accurate measurements of volume and surface area for zebrafish larvae can be obtained. We have applied the proposed method on a range of developmental stages in zebrafish and produced metrical references for the volume and surface area for each stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.