Data from the Cloud Imaging and Particle Size experiment on the Aeronomy of Ice in the Mesosphere (AIM) satellite are employed to study the impact of small-scale gravity wave (GW) on albedo, ice water content (IWC), and particle radius (PR) of polar mesospheric clouds. Overall, 23,987 eligible GW events, with a horizontal wavelength of 20-150 km are eventually extracted from Cloud Imaging and Particle Size level 2 orbit albedo maps during 2007-2011. The overall statistical results show that when small-scale GWs travel horizontally in polar mesospheric clouds, they can amplify the albedo and IWC by a rate of 10.0-22.6%, while reducing the PR by as much as À7.01%. Owing to the strong temporal and spatial dependences, the albedo and IWC variations are larger on an average during the core of the season, while they decrease during the initial and final periods of the season. The obvious zonal asymmetries are also found. The albedo variations show a positive linear relation with the GW amplitudes in albedo, as opposed to a negative linear relation with GW horizontal wavelengths. In most of the GW events, the periodic variation in the trend of albedo exhibits an anticorrelation with that of PR. Combining previous research studies with our results, we deduce that the rapid change in particle concentration and the upward movement of water vapor by GWs may be very important aspects for explaining the influence mechanism.
A partially light-controlled imaging system is proposed as a novel device. It is used to improve the imaging quality at the illumination of 1.979 x 10(5)lx by means of mitigating image contrast. It consists of a High Temperature Poly-Silicon Thin Film Transistor-Liquid Crystal Display (HTPS TFT-LCD), which is set between the lens and CCD and is coupled with CCD by the optical fiber taper. The transmittance of pixelated LCD can be controlled by Field-Programmable Gate Array to realize the partially light-controlled and thus dynamic range of the imaging system can be extended. Samples of indoor objects and outdoor license plate are photographed by the prototype imaging system under strong light. The imaging results of this novel system are satisfactory with better restored details, compared with the photos taken by normal CCD camera (WAT-231S2) which uses aperture and shutter to control the overall light intensity.
Although histological analysis serves as a gold standard to cancer diagnosis, its application on skin cancer detection is largely prohibited due to its invasive nature. To obtain both the structural and pathological information in situ, a Confocal Reflectance/Auto-Fluorescence Tomography (CRAFT) system was established to examine the skin sites in vivo with both reflectance and autofluorescence modes simultaneously. Nude mice skin with cancerous sites and normal skin sites were imaged and compared with the system. The cellular density and reflective intensity in cancerous sites reflects the structural change of the tissue. With the decay coefficient analysis, the corresponding NAD(P)H decay index for cancerous sites is 1.65-fold that of normal sites, leading to a 97.8% of sensitivity and specificity for early cancer diagnosis. The results are verified by the followed histological analysis. Therefore, CRAFT may provide a novel method for the in vivo, non-invasive diagnosis of early cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.