The existence of periodic oscillation for a coupled FHN neural system with delays is investigated. Some criteria to determine the oscillations are given. Simple and practical criteria for selecting the parameters in this network are provided. Some examples are also presented to illustrate the result.
We establish a class of new nonlinear retarded weakly singular integral inequality. Under several practical assumptions, the inequality is solved by adopting novel analysis techniques, and explicit bounds for the unknown functions are given clearly. An application of our result to the fractional differential equations with delay is shown at the end of the paper.
In this paper, we establish the existence of a solitary wave in a KdV-mKdV equation with dissipative perturbation by applying the geometric singular perturbation technique and Melnikov function. The distance of the stable manifold and unstable manifold is computed to show the existence of the homoclinic loop for the related ordinary differential equation systems on the slow manifold, which implies the existence of a solitary wave for the KdV-mKdV equation with dissipative perturbation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.