We systematically compare five representative state-of-theart methods for estimating query language models with pseudo feedback in ad hoc information retrieval, including two variants of the relevance language model, two variants of the mixture feedback model, and the divergence minimization estimation method. Our experiment results show that a variant of relevance model and a variant of the mixture model tend to outperform other methods. We further propose several heuristics that are intuitively related to the good retrieval performance of an estimation method, and show that the variations in how these heuristics are implemented in different methods provide a good explanation of many empirical observations.
Although many variants of language models have been proposed for information retrieval, there are two related retrieval heuristics remaining "external" to the language modeling approach: (1) proximity heuristic which rewards a document where the matched query terms occur close to each other; (2) passage retrieval which scores a document mainly based on the best matching passage. Existing studies have only attempted to use a standard language model as a "black box" to implement these heuristics, making it hard to optimize the combination parameters.In this paper, we propose a novel positional language model (PLM) which implements both heuristics in a unified language model. The key idea is to define a language model for each position of a document, and score a document based on the scores of its PLMs. The PLM is estimated based on propagated counts of words within a document through a proximity-based density function, which both captures proximity heuristics and achieves an effect of "soft" passage retrieval. We propose and study several representative density functions and several different PLM-based document ranking strategies. Experiment results on standard TREC test collections show that the PLM is effective for passage retrieval and performs better than a state-of-theart proximity-based retrieval model.
Pseudo-relevance feedback is an effective technique for improving retrieval results. Traditional feedback algorithms use a whole feedback document as a unit to extract words for query expansion, which is not optimal as a document may cover several different topics and thus contain much irrelevant information. In this paper, we study how to effectively select from feedback documents those words that are focused on the query topic based on positions of terms in feedback documents. We propose a positional relevance model (PRM) to address this problem in a unified probabilistic way. The proposed PRM is an extension of the relevance model to exploit term positions and proximity so as to assign more weights to words closer to query words based on the intuition that words closer to query words are more likely to be related to the query topic. We develop two methods to estimate PRM based on different sampling processes. Experiment results on two large retrieval datasets show that the proposed PRM is effective and robust for pseudo-relevance feedback, significantly outperforming the relevance model in both document-based feedback and passage-based feedback.
In this paper, we reveal a common deficiency of the current retrieval models: the component of term frequency (TF) normalization by document length is not lower-bounded properly; as a result, very long documents tend to be overly penalized. In order to analytically diagnose this problem, we propose two desirable formal constraints to capture the heuristic of lower-bounding TF, and use constraint analysis to examine several representative retrieval functions. Analysis results show that all these retrieval functions can only satisfy the constraints for a certain range of parameter values and/or for a particular set of query terms. Empirical results further show that the retrieval performance tends to be poor when the parameter is out of the range or the query term is not in the particular set. To solve this common problem, we propose a general and efficient method to introduce a sufficiently large lower bound for TF normalization which can be shown analytically to fix or alleviate the problem. Our experimental results demonstrate that the proposed method, incurring almost no additional computational cost, can be applied to state-of-the-art retrieval functions, such as Okapi BM25, language models, and the divergence from randomness approach, to significantly improve the average precision, especially for verbose queries.
Relevance Feedback has proven very effective for improving retrieval accuracy. A difficult yet important problem in all relevance feedback methods is how to optimally balance the original query and feedback information. In the current feedback methods, the balance parameter is usually set to a fixed value across all the queries and collections. However, due to the difference in queries and feedback documents, this balance parameter should be optimized for each query and each set of feedback documents.In this paper, we present a learning approach to adaptively predict the optimal balance coefficient for each query and each collection. We propose three heuristics to characterize the balance between query and feedback information. Taking these three heuristics as a road map, we explore a number of features and combine them using a regression approach to predict the balance coefficient. Our experiments show that the proposed adaptive relevance feedback is more robust and effective than the regular fixed-coefficient feedback.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.