Matrix metalloproteinases (MMP) play a pivotal role in the pathogenesis of cardiovascular diseases. Their expressions are altered in response to a variety of stimuli, including growth factors, inflammatory markers, and cytokines. In this study, we demonstrated that platelet-derived growth factor-BB (PDGF-BB) induces a dose- and time-dependent increase in MMP-2 expression in rat vascular smooth muscle cells (VSMC). Treatment with either the Rho-associated protein kinase (ROCK) inhibitor Y-27632 or suppression of ROCK-1/2 by small interfering RNA technology significantly reduced the MMP-2 expression, thus suggesting that ROCK regulates such expression. Similar results were observed when VSMC were pretreated with either U0126 or SB203580, which are selective inhibitors of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase, respectively, thus suggesting that these kinases are important for the induction of MMP-2 expression by PDGF-BB. In conclusion, these results described a novel mechanism in atherosclerosis through PDGF-BB signaling in VSMC, in which MMP-2 expression is induced via extracellular signal-regulated kinases and p38 mitogen-activated protein kinase phosphorylation, as well as ROCK.
Accumulating evidence indicates that heat shock protein (HSP) 60 is strongly associated with the pathology of atherosclerosis (AS). However, the precise mechanisms by which HSP60 promotes atherosclerosis remain unclear. In the present study, we found that HSP60 mRNA and protein expression levels in the thoracic aorta are enhanced not only in a mouse model of AS but also in high-fat diet (HFD) mice. HSP60 expression and secretion was activated by platelet-derived growth factor-BB (PDGF-BB) and interleukin (IL)-8 in both human umbilical vein endothelial cells (HUVECs) and vascular smooth muscle cells (VSMCs). HSP60 was found to induce VSMC migration, and exposure to HSP60 activated ERK MAPK signaling. U0126, an inhibitor of ERK, reduced VSMC migration. The HSP60-stimulated VSMCs were found to express TLR4 mRNA but not TLR2 mRNA. Knockdown of TLR4 by siRNA reduced HSP60-induced VSMC migration and HSP60-induced ERK activation. Finally, HSP60 induced IL-8 secretion in VSMCs. Together these results suggest that HSP60 is involved in the stimulation of VSMC migration, via TLR4 and ERK MAPK activation. Meanwhile, activation of HSP60 is one of the most powerful methods of sending a ‘danger signal’ to the immune system to generate IL-8, which assists in the management of an infection or disease.
The aim of the present study was to investigate the potential mechanism underlying the anti-obesity-asthmatic effects of resveratrol (RSV) in a rat model of obese-asthma. Rat models of obesity and asthma were established using a high-fat diet and the administration of ovalbumin, respectively. Rats were divided into 7 different groups: A normal control, a normal obese, a normal asthma, a normal obese + asthma, a RSV obese, a RSV asthma and a RSV obese + asthma group. Body weight, Lee index, body fat and lung histopathological changes were evaluated. Serum lipid levels were evaluated using calorimetric methods. Levels of reactive oxygen species (ROS) were examined using enzyme-linked immunosorbent assays. Cellular antioxidant enzyme activities were measured using commercial kits. Levels of kelch-like ECH associated protein 1 (Keap-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) was examined using western blot analysis. The results indicated that obese and asthma rat models were successfully established. It was also demonstrated that RSV decreased fasting blood glucose in obese, asthmatic and obese-asthmatic rats. RSV altered serum lipid levels; it significantly increased high density lipoprotein cholesterol levels and significantly decreased serum triglyceride, serum total cholesterol and very low density lipoprotein levels, compared with untreated obese, asthmatic and obese-asthmatic rats (P<0.05). ROS levels were significantly decreased in the RSV treatment group compared with obese, asthmatic and obese-asthmatic rats (P<0.05). RSV treatment significantly increased catalase, glutathione, glutathione peroxidase and total superoxide dismutase levels compared with untreated obese, asthmatic and obese-asthmatic rats (P<0.05). Furthermore, RSV treatment significantly downregulated Keap-1 and upregulated Nrf2 levels in the heart, lung and kidney tissues of rats compared with untreated controls. Therefore, the results demonstrate that RSV protects against oxidative stress by activating the Keap-1/Nrf2 antioxidant defense system in obese-asthmatic rat models.
Anisakiasis is a parasitic disease acquired by humans when ingesting raw or undercooked fish infected with L3 larvae of the nematode genus Anisakis or Pseudoterranova. Here we report the first case of human anisakiasis in China. The patient, male, 56 years old, Dalian citizen, was admitted into the hospital with vomiting, peripheral umbilicus and abdominal distension, and frequent mucous diarrhea. The patient was examined using an electronic gastroscope, which displayed a parasite residing in the stomach, and subsequently gastroscope-assisted surgery was implemented. A white round worm was removed from the patient and stained. It was identified as L3 larvae of Anisakis. After the removal of the L3 larvae of Anisakis, the inflammation symptoms disappeared. As the first report of clinical case of Anisakis infection in China, the morphology of L3 Anisakis larvae from the patient is described and discussed. We conclude that anisakiasis should be considered in patients who have a habit of eating raw fish and who display associated symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.