Quantification
of proteomes by mass spectrometry has proven to
be useful to study human pathology recapitulated in cellular or animal
models of disease. Enriching and quantifying newly synthesized proteins
(NSPs) at set time points by mass spectrometry has the potential to
identify important early regulatory or expression changes associated
with disease states or perturbations. NSP can be enriched from proteomes
by employing pulsed introduction of the noncanonical amino acid, azidohomoalanine
(AHA). We demonstrate that pulsed introduction of AHA in the feed
of mice can label and identify NSP from multiple tissues. Furthermore,
we quantitate differences in new protein expression resulting from
CRE-LOX initiated knockout of LKB1 in mouse livers. Overall, the PALM
strategy allows for the first time in vivo labeling of mouse tissues
to differentiate protein synthesis rates at discrete time points.
Adsorption represents an efficient and economical approach for water purification and substantial research is being performed to develop effective sorbent materials.
N-glycans contribute to the folding, stability and functions of the proteins they decorate. They are produced by transfer of the glycan precursor to the sequon Asn-X-Thr/Ser, followed by enzymatic trimming to a high-mannose-type core and sequential addition of monosaccharides to generate complex-type and hybrid glycans. This process, mediated by the concerted action of multiple enzymes, produces a mixture of related glycoforms at each glycosite, making analysis of glycosylation difficult. To address this analytical challenge, we developed a robust semiquantitative mass spectrometry (MS)-based method that determines the degree of glycan occupancy at each glycosite and the proportion of N-glycans processed from high-mannose type to complex type. It is applicable to virtually any glycoprotein, and a complete analysis can be conducted with 30 μg of protein. Here, we provide a detailed description of the method that includes procedures for (i) proteolytic digestion of glycoprotein(s) with specific and nonspecific proteases; (ii) denaturation of proteases by heating; (iii) sequential treatment of the glycopeptide mixture with two endoglycosidases, Endo H and PNGase F, to create unique mass signatures for the three glycosylation states; (iv) LC-MS/MS analysis; and (v) data analysis for identification and quantitation of peptides for the three glycosylation states. Full coverage of site-specific glycosylation of glycoproteins is achieved, with up to thousands of high-confidence spectra hits for each glycosite. The protocol can be performed by an experienced technician or student/postdoc with basic skills for proteomics experiments and takes ∼7 d to complete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.