An innovative numerical procedure for solving the viscoelastic arch problem based on variable fractional rheological models, directly in time domain, is proposed and investigated. First, the nonlinear integral‐differential governing equation is established according to the variable fractional constitutive relation and geometrical relationship. Second, the nonlinear integral‐differential governing equation is transformed into algebraic equations and solved by using the shifted Legendre polynomials. Furthermore, the accuracy and effectiveness of the algorithm are verified according to the mathematical example. A small value of the absolute error between numerical and accurate solution is obtained. Finally, the dynamic analysis of viscoelastic arch is investigated to determine the displacement at different times and positions. The displacement of the viscoelastic arch is compared under various loading (uniformly distributed load and linear load). The displacement of the viscoelastic arch of different materials under the same load conditions is also investigated. The results in the paper show the efficiency of the proposed numerical algorithm in the dynamical analysis of the viscoelastic arch.
The dynamic analysis of viscoelastic pipes conveying fluid is investigated with the variable fractional order model in this article. The nonlinear variable fractional order integral-differential equation is established by introducing the model into the governing equation. Then the Shifted Legendre Polynomials algorithm is first presented for dealing with this kind of equations. The numerical example verifies that the algorithm is an effective and accurate technique for addressing this type complicated equation. Numerical results for dynamic analysis of viscoelastic pipes conveying fluid show the effect of parameters on displacement, acceleration, strain and stress. It also indicates that how dynamic properties are affected by the variable fractional order and fluid velocity varying. Most of all, the proposed algorithm has enormous potentials for the problem of high precision dynamics with the variable fractional order model.
Viscoelastic pipeline conveying fluid is analyzed with an improved variable fractional order model for researching its dynamic properties accurately in this study. After introducing the improved model, an involuted variable fractional order, which is an unknown piecewise nonlinear function for analytical solution, an equation is established as the governing equation for the dynamic displacement of the viscoelastic pipeline. In order to solve this class of equations, a numerical method based on shifted Legendre polynomials is presented for the first time. The method is effective and accurate after the numerical example verifying. Numerical results show that how dynamic properties are influenced by internal fluid velocity, force excitation, and variable fractional order through the proposed method. More importantly, the numerical method has shown great potentials for dynamic problems with the high precision model.
In this paper, a fractional viscoelastic model is proposed to describe the physical behaviour of polymeric material. The material parameters in the model are characterized by the experimental data obtained in the dynamical mechanical analysis. The proposed model is integrated into the fractional governing equation of polymethyl methacrylate (PMMA) above its glass transition temperature. The numerical algorithm based on the shifted Legendre polynomials is retained to solve the fractional governing equations in the time-domain. The accuracy and effectiveness of the algorithm are verified according to the mathematical examples. The advantage of this method is that Laplace transform and the inverse Laplace transform commonly used in fractional calculus are avoided. The dynamical response of the viscoelastic PMMA beam is determined with several loading conditions (uniformly distributed load and harmonic load). The effects of the loading condition and the temperature on the dynamic response of the beam are investigated in the results. The proposed approach shows great potentials for the highprecision calculation in solving the fractional equations in the science and engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.