2D layered chalcogenide semiconductors have been proposed as a promising class of materials for low‐dimensional electronic, optoelectronic, and spintronic devices. Here, all‐2D van der Waals vertical spin‐valve devices, that combine the 2D layered semiconductor InSe as a spacer with the 2D layered ferromagnetic metal Fe3GeTe2 as spin injection and detection electrodes, are reported. Two distinct transport behaviors are observed: tunneling and metallic, which are assigned to the formation of a pinhole‐free tunnel barrier at the Fe3GeTe2/InSe interface and pinholes in the InSe spacer layer, respectively. For the tunneling device, a large magnetoresistance (MR) of 41% is obtained under an applied bias current of 0.1 µA at 10 K, which is about three times larger than that of the metallic device. Moreover, the tunneling device exhibits a lower operating bias current but a more sensitive bias current dependence than the metallic device. The MR and spin polarization of both the metallic and tunneling devices decrease with increasing temperature, which can be fitted well by Bloch's law. These findings reveal the critical role of pinholes in the MR of all‐2D van der Waals ferromagnet/semiconductor heterojunction devices.
The magnetic tunnel junction (MTJ) is the core component in memory technologies, such as the magnetic random-access memory, magnetic sensors and programmable logic devices. In particular, MTJs based on two-dimensional (2D) van der Waals (vdW) heterostructures offer unprecedented opportunities for low power consumption and miniaturization of spintronic devices. However, their operation at room temperature remains a challenge. Here, we report a large tunnel magnetoresistance (TMR) of up to 85% at room temperature (T = 300 K) in vdW MTJs based on a thin (< 10 nm) semiconductor spacer WSe2 layer embedded between two Fe3GaTe2 electrodes with intrinsic above-room-temperature ferromagnetism. The TMR in the MTJ increases with decreasing temperature up to 164% at T = 10 K. The demonstration of TMR in ultra-thin MTJs at room-temperature opens a realistic and promising route for next-generation spintronic applications beyond the current state of the art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.