Wireless Mesh Networks (WMNs) technology has been used in recent years for broadband access in both cities and rural areas. A key development is to equip routers with multiple directional antennas so that these routers can transmit to, or receive from multiple neighbors simultaneously. The Multi-Transmit-Receive (MTR) feature can boost network capacity significantly if suitable scheduling policy is applied. In this paper, we propose a distributed link scheduler called PCP-TDMA that fully utilizes the MTR capability. In particular, it activates every link at least once within the shortest period of time. We evaluated the performance of PCP-TDMA in various network topologies, and compared it against a centralized algorithm called ALGO-2, and two distributed approaches: JazzyMAC and ROMA. The results show that PCP-TDMA achieves similar performance with the centralized algorithm in all scenarios, and outperforms the distributed approaches significantly. Specifically, in a fully connected network, the resulting superframe length of PCP-TDMA is less than 1 /3 and 1 /2 of JazzyMAC and ROMA, respectively.
A key advance in enabling higher wireless mesh network capacity is allowing routers to transmit or receive (MTR) from multiple neighbors simultaneously over the same frequency. Achieving this capacity, however, is predicated on a link scheduler that is able to capitalize on the MTR capability of nodes to activate the maximum number of active links, and also to derive the shortest schedule that ensures all links are activated at least once. To date, existing schedulers do not consider the transmission or air-time of packet(s). Henceforth, this paper fills this gap and propose to derive the shortest superframe length, defined as the end time of the last transmitting link. Our scheduler, called A-TxRx, greedily adds links whenever a link finishes its transmission. As a result, unlike previous schedulers, links can start transmitting/receiving as soon as there is no conflict. We have evaluated the performance of A-TxRx in various network configurations, and compared it against two state-of-the-art approaches: 2P and JazzyMAC. The results show A-TxRx outperforming these algorithms significantly, especially when the network becomes denser. Specifically, the superframe length of A-TxRx is typically less than half of 2P and JazzyMAC, with 60 % more concurrently transmitting links.
Next generation Wireless Mesh Networks (WMNs) will require a link scheduler that exploits the full advantage of Multi-Transmit-Receive (MTR) commuication. To this end, we design a distributed link scheduler called Voting-ALGO that is aware of queue lengths and uses the celebrated max weight policy to achieve 100% throughput.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.