Wingless-Type MMTV Integration Site Family, Member 6 (WNT6) is a member of the Wnt family and its expression is abnormal in different human cancer cell lines. The purpose of this study was to investigate the clinical significance of WNT6 in osteosarcoma.The levels of WNT6 mRNA and protein in tissue and serum were detected through quantitative real-time polymorperase chain reaction (qRT-PCR) and Enzyme Lined Immunosorbent Assay (ELISA), respectively. Chi-square test was performed to estimate the association of WNT6 expression with clinical parameters among osteosarcoma patients. Receiver operation characteristic (ROC) curve was plotted to determine diagnostic performance of serum WNT6 in osteosarcoma. Survival analysis was performed using Kaplan–Meier method. Cox regression analysis was adopted to evaluate prognostic significance of WNT6 expression among osteosarcoma patients.Compared with the controls, WNT6 mRNA and protein levels were significantly elevated in patients with osteosarcoma (P > .05 for all). Furthermore, WNT6 upregulation showed positive correlation with patients’ age (P < .001), tumor grade (P < .001) and distant metastasis (P = .001). WNT6 might be a diagnostic marker for osteosarcoma with an AUC of 0.854 combining a specificity of 88.4% and a sensitivity of 77.8%. Survival analysis result indicated that high WNT6 expression predicted poor survival (log rank test, P = .001). WNT6 might be a potential prognostic biomarker for osteosarcoma (HR = 2.227, 95%CI = 1.061–10.842, P = .027).WNT6 may be a diagnostic and prognostic marker in osteosarcoma.
Due to limited depth-of-focus, classical 2D images inevitably lose details of targets out of depth-of-focus, while all-in-focus images break through the limit by fusing multi-focus images, thus being able to focus on targets in extended depth-of-view. However, conventional methods can hardly obtain dynamic all-in-focus imaging in both high spatial and temporal resolutions. To solve this problem, we design REPAID, meaning resolution-enhanced plenoptic all-in-focus imaging using deep neural networks. In REPAID, multi-focus images are first reconstructed from a single-shot plenoptic image, then upsampled using specially designed deep neural networks suitable for real scenes without ground truth to finally generate all-in-focus image in both high temporal and spatial resolutions. Experiments on both static and dynamic scenes have proved that REPAID can obtain high-quality all-in-focus imaging when using simple setups only; therefore, it is a promising tool in applications especially intended for imaging dynamic targets in large depth-of-view.
Spinal cord injury (SCI) is a devastating neurological condition prevalent worldwide. Where the pathological mechanisms underlying SCI are concerned, we can distinguish between primary injury caused by initial mechanical damage and secondary injury characterized by a series of biological responses, such as vascular dysfunction, oxidative stress, neurotransmitter toxicity, lipid peroxidation, and immune-inflammatory response. Secondary injury causes further tissue loss and dysfunction, and the immune response appears to be the key molecular mechanism affecting injured tissue regeneration and functional recovery from SCI. Immune response after SCI involves the activation of different immune cells and the production of immunity-associated chemicals. With the development of new biological technologies, such as transcriptomics, the heterogeneity of immune cells and chemicals can be classified with greater precision. In this review, we focus on the current understanding of the heterogeneity of these immune components and the roles they play in SCI, including reactive astrogliosis and glial scar formation, neutrophil migration, macrophage transformation, resident microglia activation and proliferation, and the humoral immunity mediated by T and B cells. We also summarize findings from clinical trials of immunomodulatory therapies for SCI and briefly review promising therapeutic drugs currently being researched.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.