As inflammation in the brain contributes to several neurological and psychiatric diseases, the cause of neuroinflammation is being widely studied. The causes of neuroinflammation can be roughly divided into the following domains: viral infection, autoimmune disease, inflammation from peripheral organs, mental stress, metabolic disorders, and lifestyle. In particular, the effects of neuroinflammation caused by inflammation of peripheral organs have yet unclear mechanisms. Many diseases, such as gastrointestinal inflammation, chronic obstructive pulmonary disease, rheumatoid arthritis, dermatitis, chronic fatigue syndrome, or myalgic encephalomyelitis (CFS/ME), trigger neuroinflammation through several pathways. The mechanisms of action for peripheral inflammation-induced neuroinflammation include disruption of the blood-brain barrier, activation of glial cells associated with systemic immune activation, and effects on autonomic nerves via the organ-brain axis. In this review, we consider previous studies on the relationship between systemic inflammation and neuroinflammation, focusing on the brain regions susceptible to inflammation.
Ulcerative colitis (UC) is a non-specific inflammatory bowel disease that causes ulcers and erosions in the colonic mucosa and becomes chronic with cycles of amelioration and exacerbation. Because its exact etiology remains largely unclear, and the primary therapy is limited to symptomatic treatment, the development of new therapeutic agent for UC is highly desired. Because one of the disease pathogenesis is involvement of oxidative stress, it is likely that an appropriate antioxidant will be an effective therapeutic agent for UC. Our silicon (Si)-based agent, when ingested, allowed for stable and persistent generation of massive amounts of hydrogen in the gastrointestinal tract. We demonstrated the Si-based agent alleviated the mental symptom as well as the gastrointestinal symptoms, inflammation, and oxidation associated with dextran sodium sulfate-induced UC model through Hydrogen and antioxidant sulfur compounds. As the Si-based agent was effective in treating UC in the brain and large intestine of mice, it was considered to be capable of suppressing exacerbations and sustaining remission of UC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.