SUMMARY Research background. Depression has become a global threat to human health. In order to solve it, researchers have conducted multi-faceted studies including diet. Many food-derived bioactive substances have shown antidepressant effects. However, there are few studies on the design of industrialized food with antidepressant effect. This study aimed to evaluate the antidepressant effect of a functional beverage made from several ingredients with potential antidepressant function and investigate its antidepressant mechanisms. Experimental approach. The beverage consists of peppermint oil, active peptides derived from bovine milk casein and Acanthopanax senticosus extract (ASE) whose active ingredient is eleutheroside. Different amounts of ASE were evaluated to determine the optimal concentration of eleutheroside in this functional beverage to deliver best antidepressant effect through extensive behavioral testing including preliminary acute stress experiments and further chronic unpredictable mild stress test. Results and conclusions. The results demonstrated that the beverage with 15.00 mg/kg of eleutheroside could significantly reduce the mice’s immobility time of tail suspension test and forced swimming test, recover mice’s sucrose preference and behavior changes in the open-field test, improve the contents of dopamine, norepinephrine, 5-hydroxytryptamine and the activity of superoxide dismutase and reduce the content of malondialdehyde in mice’s brains, which indicated that the improvement of monoamine neurotransmitter systems and antioxidation was one potential mechanism of antidepressant action. Novelty and scientific contribution. This study provides a design of antidepressant functional beverage and an efficient way for the prevention and treatment of depression.
BACKGROUND Three kinds of diet containing chicken protein isolate (CPI), bovine milk protein isolate (BMPI), and soy protein isolate (SPI), respectively, were designed to investigate the influences of proteins on cognitive levels and related mechanisms in mice. RESULTS A Morris water maze (MWM) test showed that the SPI group had a higher cognitive level than the BMPI group. Immunohistochemical staining and chemical analysis of the hippocampus showed that the SPI group had higher synaptophysin expression, doublecortin‐positive cell proportion, superoxide dismutase activity, and lower malondialdehyde content compared with the BMPI group. The same parameters in the CPI group were between those of the BMPI and SPI groups. Microbiome sequencing indicated that the three groups differed significantly at the phylum, genus, and species levels, with higher microbial alpha diversity in the CPI and SPI groups. The association of intestinal microbiota with cognitive improvement was also assessed. The present study suggests that soy protein may increase cognitive function by the gut‐brain axis. CONCLUSION In contrast with CPI and BMPI, SPI had a better effect on improving the cognitive level in mice, which was achieved through the regulation of hippocampal neural growth, oxidative stress, and intestinal microbiota. © 2022 Society of Chemical Industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.