It
has been a longstanding challenge to rationally synthesize thin
films of organic two-dimensional (2D) crystals with large single-crystalline
domains. Here, we present a general strategy for the creation of 2D
crystals of covalent organic frameworks (COFs) on the water surface,
assisted by a charged polymer. The morphology of the preorganized
monomers underneath the charged polymer on the water surface and their
diffusion were crucial for the formation of the organic 2D crystals.
Thin films of 2D COFs with an average single-crystalline domain size
of around 3.57 ± 2.57 μm2 have been achieved,
and their lattice structure, molecular structure, and grain boundaries
were identified with a resolution down to 3 Å. The swing of chain
segments and lattice distortion were revealed as key factors in compensating
for the misorientation between adjacent grains and facilitating error
corrections at the grain boundaries, giving rise to larger single-crystalline
domains. The generality of the synthesis method was further proved
with three additional 2D COFs. The oriented single-crystalline domains
and clear grain boundaries render the films as model materials to
study the dependence of the vertical conductivity of organic 2D crystals
on domain sizes and chemical structures, and significant grain boundary
effects were illustrated. This study presents a breakthrough in the
controlled synthesis of organic 2D crystals with structural control
at the molecular level. We envisage that this work will inspire further
investigation into the microstructure–intrinsic property correlation
of 2D COFs and boost their application in electronics.
Bone morphogenetic protein-2 (BMP-2) serves an important role in the development of bone and cartilage. However, administration of BMP-2 protein alone by intravenous delivery is not very effective. Sustained delivery of stabilized BMP-2 by carriers has been proven necessary to improve the osteogenesis effect of BMP-2. The present study constructed a novel drug delivery system using dextran sulfate (DS)-chitosan (CS) microspheres and investigated the efficiency of the delivery system on recombinant human bone morphogenetic protein (rhBMP-2). The microsphere morphology, optimal ratio of DS/CS/rhBMP-2, and drug loading rate and entrapment efficiency of rhBMP-2 CS nanoparticles were determined. L929 cells were used to evaluate the cytotoxicity and effect of DS/CS/rhBMP-2 microspheres on cell proliferation. Differentiation study was conducted using bone marrow mesenchymal stem cells (BMSCs-C57) cells treated with DS/CS/rhBMP-2 microspheres or the control microspheres. The DS/CS/rhBMP-2 microspheres delivery system was successfully established. Subsequent complexation of rhBMP-2-bound DS with polycations afforded well defined microspheres with a diameter of ~250 nm. High protein entrapment efficiency (85.6%) and loading ratio (47.245) µg/mg were achieved. Release of rhBMP-2 from resultant microspheres persisted for over 20 days as determined by ELISA assay. The bioactivity of rhBMP-2 encapsulated in the CS/DS microsphere was observed to be well preserved as evidenced by the alkaline phosphatase activity assay and calcium nodule formation of BMSCs-C57 incubated with rhBMP-2-loaded microspheres. The results demonstrated that microspheres based on CS-DS polyion complexes were a highly efficient vehicle for delivery of rhBMP-2 protein. The present study may provide novel orientation for bone tissue engineering for repairing and regenerating bone defects.
In the present study, the effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) delivered by chitosan (CS) microspheres on ectopic osteogenesis was investigated in a rat model. rhBMP-2-loaded CS microspheres and blank CS microspheres were prepared. A total of 24 male Sprague Dawley rats were divided into 4 groups with 6 rats in each group: The CS/rhBMP-2 group, the rhBMP-2 group, in which rhBMP-2 was directly implanted (rhBMP-2 dose in either group, 1 mg), the CS blank group and the control group. X-ray was performed at 4 weeks after ectopic osteogenesis surgery and micro-computed tomography (CT) examination was scheduled at 1, 2, 3 and 4 weeks after the surgery to determine ectopic osteogenesis in the different groups. Histological analysis, and determination of alkaline phosphatase (ALP) activity and calcium content were also performed. The mean diameter of the osteoid tissues was 1.1±0.3 cm (range, 0.8–1.4 cm) in the CS/rhBMP-2 group, which was significantly bigger than that in the rhBMP-2 group (0.3±0.1 cm; range, 0.1–0.4 cm) at 4 weeks after the surgery. X-ray analysis and micro-CT scan indicated that the area of high-density tissues and the radionuclide intensity, as well as bone volume in the 3-dimensional reconstruction were greatest in the CS/rhBMP-2 group, followed by those in the rhBMP-2 group. All parameters, including bone mineral density, tissue mineral density, tissue mineral content and bone volume fraction, were significantly higher in the CS/rhBMP-2 group at 3 and 4 weeks after the surgery, compared with those in the rhBMP-2 group. The histological analysis, ALP activity analysis and determination of calcium content revealed that the CS/rhBMP-2 system had the greatest ability to induce osteoblast differentiation. In conclusion, the CS/rhBMP-2 microsphere delivery system significantly enhanced the induction and promotion effects of rhBMP-2 regarding ectopic osteogenesis. The present study enhances the basic data available for future application of the CS/rhBMP-2 microspheres delivery system and provides a deeper understanding of the role of BMP-2 in bone regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.