An accurate estimator of the real-time fatality rate is warranted to monitor the progress of ongoing epidemics, hence facilitating the policy-making process. However, most of the existing estimators fail to capture the time-varying nature of the fatality rate and are often biased in practice. A simple real-time fatality rate estimator with adjustment for reporting delays is proposed in this paper using the fused lasso technique. This approach is easy to use and can be broadly applied to public health practice as only basic epidemiological data are required. A large-scale simulation study suggests that the proposed estimator is a reliable benchmark for formulating public health policies during an epidemic with high accuracy and sensitivity in capturing the changes in the fatality rate over time, while the other two commonly-used case fatality rate estimators may convey delayed or even misleading signals of the true situation. The application to the COVID-19 data in Germany between January 2020 and January 2022 demonstrates the importance of the social restrictions in the early phase of the pandemic when vaccines were not available, and the beneficial effects of vaccination in suppressing the fatality rate to a low level since August 2021 irrespective of the rebound in infections driven by the more infectious Delta and Omicron variants during the fourth wave.
Infectious diseases, such as the ongoing COVID-19 pandemic, pose a significant threat to public health globally. Fatality rate serves as a key indicator for the effectiveness of potential treatments or interventions. With limited time and understanding of novel emerging epidemics, comparisons of the fatality rates in real-time among different groups, say, divided by treatment, age, or area, have an important role to play in informing public health strategies. We propose a statistical test for the null hypothesis of equal real-time fatality rates across multiple groups during an ongoing epidemic. An elegant property of the proposed test statistic is that it converges to a Brownian motion under the null hypothesis, which allows one to develop a sequential testing approach for rejecting the null hypothesis at the earliest possible time when statistical evidence accumulates. This property is particularly important as scientists and clinicians are competing with time to identify possible treatments or effective interventions to combat the emerging epidemic. The method is widely applicable as it only requires the cumulative number of confirmed cases, deaths, and recoveries. A large-scale simulation study shows that the finite-sample performance of the proposed test is highly satisfactory. The proposed test is applied to compare the difference in disease severity among Wuhan, Hubei province (exclude Wuhan) and mainland China (exclude Hubei) from February to March 2020. The result suggests that the disease severity is potentially associated with the health care resource availability during the early phase of the COVID-19 pandemic in mainland China.
This article has earned an open data badge "Reproducible Research" for making publicly available the code necessary to reproduce the reported results. The results reported in this article could fully be reproduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.