Lycium barbarum polysaccharides (LBPs), as bioactive compounds extracted from L. barbarum L. fruit, have been widely explored for their potential health properties. The extraction and structural characterization methods of LBPs were reviewed to accurately understand the extraction method and structural and biological functions of LBPs. An overview of the biological functions of LBPs, such as antioxidant function, antitumor activity, neuroprotective effects, immune regulating function, and other functions, were summarized. This review provides an overview of LBPs and a theoretical basis for further studying and extending the applications of LBPs in the fields of medicine and food.
Mesenchymal stem cells (MSCs IntroductionMesenchymal stem cells (MSCs) are defined as a group of multipotent stem cells that can functionally differentiate into at least bone, fat, and cartilage in vitro and in vivo. [1][2][3][4][5][6][7][8] Under appropriate culture conditions, MSCs are readily amplified in vitro for several passages without signs of senescence and differentiation. The 2 properties render them as an intriguing source in cell therapy and tissue engineering. MSCs were first documented by Friedenstein et al at an extremely low frequency within the bone marrow (BM), a canonical reservoir for a variety of stem cells. 1 Functionally, the self-renewal and differentiation of hematopoietic stem cells (HSCs) are tightly and precisely regulated by the marrow stromal milieu, a complex cellular network composed of the descendents of MSCs. For example, osteoblasts lining the bone surface can modulate the HSC expansion via Notch signaling pathway or N-cadherin/-catenin adherens complex in vitro and in vivo. 9,10 The MSC, itself, can also modulate hematopoiesis in vitro through secreting a set of hematopoietic cytokines and intercellular contact. 11,12 Systemic administration of adult or fetal tissue-derived MSCs promotes the homing and engraftment of HSCs in vivo by unknown mechanisms. [13][14][15][16] Despite of our increasing understanding of MSCs in adult hematopoiesis, little is known about their developmental origin and correlation with strikingly changing blood-forming sites during embryogenesis, particularly in the human being. 17 The first wave of hematopoiesis in humans is initiated during the third week in the extraembryonic yolk sac (YS), characterized by the production of nucleated erythrocytes in situ. 18,19 As is the case in other higher vertebrates, the second wave is characterized by de novo generation of HSCs in the intraembryonic P-Sp/AGM, followed by migration and colonizing downstream fetal liver for further maturation and amplification. [20][21][22][23] Campagnoli et al claim that human MSCs appear first in fetal blood at the seventh week, and later in the fetal liver and bone marrow from the 10th week. 24 Recently, Mendes et al reported that the mesenchymal progenitors are exclusively allocated in the mouse AGM. 25 However, the ontogeny of human MSCs in the embryonic hematopoietic tissues remains unknown.Herein, we found that human AGM region served as a potent niche for embryonic MSCs that were roughly identical to the bone marrow regarding general morphology, immunophenotype, triple differentiation capacity, and immunobiologic feature. The expression of pluripotential-related markers (Oct-4 and Nanog) and the hematopoietic supportive activity in AGM-derived MSCs corroborated their development stage and anatomic location. Methods Human samplesEighteen human embryos at 25 to 40 days of development were obtained immediately after voluntary terminations of pregnancy induced with the RU 486 antiprogestative compound. Human tissue collection for research purpose was approved by Research Eth...
Background/Aims: Mesenchymal stem cells (MSCs) do not readily migrate to appropriate sites, and this creates a major obstacle for their use in the treatment of graft-versus-host disease (GVHD). Intercellular adhesion molecule-1 (ICAM-1) can guide the homing of various immune cells to the proper anatomical location within secondary lymphoid organs (SLOs), which are the major niches for generating immune responses or tolerance. MSCs rarely migrate to SLOs after intravenous infusion, and are constitutively low expression of ICAM-1. So in our previous work, ICAM-1 was engineered into a murine MSC line C3H10T1/2 by retrovirus transfection system (ICAM-1MSCs). Here, we hypothesized that ICAM-1highMSCs may significantly improve their immunomodulatory effect. Methods: We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate ICAM-1highMSCs immunomodulatory effect on dendritic cells (DCs) and T cells in vitro and in vivo. MSCs were labeled with carboxyfluorescein diacetate succinimidylester (CFSE) to detect its distribution in mouse model. Results: Our in vitro analyses revealed ICAM-1 MSCs could suppress DCs maturation according to co-culture methods and suppress the T cell immune response according to the mixed lymphocyte response (MLR) and lymphoblast transformation test (LTT) tests. We found that infusion of ICAM-1highMSCs potently prolonged the survival of GVHD mouse model. The infused ICAM-1highMSCs migrate to SLOs in vivo, and suppressed DCs maturation, suppressed CD4+ T cell differentiation to Th1 cells, and increased the ratios of Treg cells. Conclusions: Taken together, these data demonstrate that ICAM-1highMSCs had an enhanced immunosuppressive effect on DCs and T cells, which may help explain the protective effect in a GVHD model. This exciting therapeutic strategy may improve the clinical efficacy of MSC-based therapy for GVHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.