To fully understand the electrochemical machining profile, a multi-physics coupling simulation model including flow-electric-temperature-structure field were established to analyze the corrosion process of the anode material and the change trend of temperature,hydrogen volume fraction, electrolyte conductivity and current density in the processing gap.The analysis results show that the temperature and hydrogen content gradually increase along the process direction.The current density and material removal showed a parabolic trend of the upper opening and the lower opening, respectively.The simulation of the different physical field changes in the electrochemical machining blade profile can not only better understand the complex physical phenomena in the machining, but also provide a theoretical basis for the selection of actual electrochemical machining parameters.
Electrochemical machining involves three couplings between electric field, flow field and thermal field. The precipitation of hydrogen on the surface of the cathode will affect the entire electrochemical machining process and the final machining quality of the workpiece. Finite element software is used to analyze the effects of different voltages, electrolyte inlet pressure and interelectrode gap on current density, hydrogen volume fraction, conductivity and temperature distribution in this article. The research results show that the increase of processing voltage will increase the current density, hydrogen volume fraction and temperature, and decrease the conductivity of the solution. As the pressure of the electrolyte increases, the current density and conductivity increase, but the hydrogen volume fraction and temperature decrease. The current density, hydrogen volume fraction and temperature decrease, and the conductivity increases when the gap between electrodes increases. At the inlet, the current density and conductivity are relatively large, and gradually decrease along the electrolyte flow direction, while the hydrogen volume fraction and temperature are the smallest at the inlet, and gradually accumulate along the electrolyte flow direction, and reach the maximum at the outlet. Through multi-physics coupling simulation, the current density, temperature, conductivity and bubble distribution in electrochemical machining can be predicted, which can provide a theoretical basis for actual electrochemical machining process parameter selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.