Objective Icariin (IC) promotes osteogenic differentiation, and it may be a potential small molecule drug for local application in bone regeneration. Icariin-loaded hydroxyapatite/alginate (IC/HAA) porous composite scaffolds were designed in this study for the potential application of the sustainable release of icariin and subsequent bone regeneration. Methods An icariin-loaded hydroxyapatite/alginate porous composite scaffold was prepared and characterized by SEM and HPLC for morphology and release behavior, respectively. The mechanical properties, degradation in PBS and cytotoxicity on BMSCs were also evaluated by MTT assay, compression strength and calculation of weight remaining ratio, respectively. Rabbit BMSCs were cocultured with IC/HAA scaffolds, and ALP activity and Alizarin Red staining were performed to evaluate osteogenic differentiation induction. The mRNA and protein expression level of an osteogenic gene was detected by RT-PCR and Western blotting, respectively. In vivo animal models of critical bone defects in the radius of rabbit were used. Four and 12 weeks after the implantation of IC/HAA scaffolds in the bone defect, radiographic images of the radius were obtained and scored by using the Lane and Sandhu X-ray scoring system. Tissue samples were also evaluated using H&E and Masson staining, and an osteogenic gene and Wnt signaling pathway genes were detected. Results A hydroxyapatite/alginate (HAA) porous composite scaffold-loaded icariin was fabricated using a freeze-drying method. Our data indicated that the icariin was loaded in alginate scaffold without compromising the macro/microstructure or mechanical properties of the scaffold. Notably, the IC/HAA promoted the proliferation of rBMSCs without exerting cytotoxicity on rBMSCs. In vivo, rabbit radius bone defect experiments demonstrated that the IC/HAA scaffold exhibited better capacity for bone regeneration than HAA, and IC/HAA upregulated the relative expression levels of an osteogenic gene and the Wnt signaling pathway genes. Most notably, the IC/HAA scaffold also inhibited osteoclast activity in vivo. Conclusion Our data suggests a promising application for the use of HAA scaffolds to load icariin and promote bone regeneration in situ through mediation of the coupling processes of osteogenesis induction and osteoclast activity inhibition.
Minimally invasive surgery will be gradually applied to the surgical treatment of bone tumors. One of the difficulties in the minimally invasive treatment of bone tumors is the lack of injectable materials that can be used to treat tumor-induced bone defects. Therefore, it is imperative to develop an injectable bone filler that can not only be injected into the defect site by minimally invasive methods to provide strong support and repair bone tissue but also inactivate residual tumor cells around the defect. To achieve this aim, in our study, for the first time, we doped Fe3O4/graphene oxide (GO) nanocomposites into α-tricalcium phosphate (α-TCP)/calcium sulfate (CS) biphasic bone cement to prepare an injectable magnetic bone cement (α-TCP/CS/Fe3O4/GO, αCFG), which can be applied in bone tumor minimally invasive surgery and fit ideally even if the area is irregular. The magnetothermal performance of the αCFG bone cement could be well adjusted by altering the content of Fe3O4/GO nanocomposites and the magnetic field parameters, but a 10 wt % Fe3O4/GO content formed the most stable bone cement with excellent magnetothermal performance. The αCFG bone cement not only promotes bone regeneration but also exhibits enhanced tumor treatment effects. Such multifunctional bone cement could provide a promising clinical strategy for the minimally invasive treatment of tumor-induced bone destruction.
Osteosarcoma patients with lung metastasis and local invasion remain challenging to treat despite the significant contribution of the combination of surgery and neo-adjuvant chemotherapy. Our previous microarray study demonstrated that miR-302b had significantly lower expression in osteosarcoma cell lines than in osteoblast cell lines. In the present study, we further elucidated the role of miR-302b in regulating the migration and invasiveness of osteosarcoma. MiR-302b expression was markedly down-regulated in osteosarcoma cell lines and clinical tumour tissues. Lower levels of miR-302b expression were significantly associated with metastasis and high pathological grades. A functional study demonstrated that over-expression of miR-302b suppressed tumour cell proliferation, invasion and migration in vitro and in vivo. Runx2 was identified as a direct target gene for miR-302b by bioinformatics analysis and dual-luciferase reporter gene assay. Moreover, over-expression of miR-302b induced down-regulation of Runx2, OPN, MMP-2, MMP-9, MMP-12, MMP-14, and VEGF in 143B cells. Exogenous expression of Runx2 partially rescued the inhibitory effect of miR-302b on the invasion and migration activity of 143B osteosarcoma cells. Taken together, our results indicate that miR-302b functions as a tumour repressor in the invasion and migration of osteosarcoma by directly downregulating Runx2 expression and may be a potential therapeutic target for osteosarcoma.
Osteoporosis (OP) results from the impaired function of endogenous bone marrow mesenchymal stem cells (BMSCs). Icariin (ICA) has shown potential osteoprotective effects. However, the molecular mechanism for the anabolic action of ICA remains largely unknown. The objective of the present study is to investigate whether ICA prevents bone loss by acting on BMSCs via affecting the level of autophagy after ovariectomy (OVX). The BMSCs were extracted from BALB/c mice treated with ICA, chloroquine (CQ, an autophagy inhibitor) or ICA + CQ. The OVX mice were injected with ICA, CQ, or ICA + CQ for 1 month. We performed Alizarin Red staining and alkaline phosphatase staining to detect osteogenic differentiation of BMSCs. Micro-CT, hematoxylin and eosin staining, Oil Red O staining, and tartrate-resistant acid phosphatase staining were used to assess the bone mass, lipid droplets and osteoclasts in femurs. Autophagy activity in BMSCs from different groups was evaluated by Western blot analysis. The osteogenic differentiation of BMSCs from OVX-induced OP mice was decreased. Treatment with ICA reduced bone loss and formation of osteoclasts and increased osteogenic differentiation of BMSCs in vitro and vivo. In addition, autophagy was enhanced in BMSCs of OVX mice treated with ICA. Our results indicate that ICA prevents OVX-induced bone loss possibly by strengthening the osteogenic differentiation of BMSCs via increasing autophagic activity. K E Y W O R D S autophagy, bone marrow mesenchymal stem cells, chloroquine, icariin, osteoporosis | INTRODUCTIONWith the increasing of the aging population, osteoporosis (OP) is becoming a clinically significant problem worldwide, 1 and it is estimated that one in three women and one in five men are affected with OP. OP is characterized by the reduction of bone mass and disorganization of the trabecular architecture, resulting in weakening of the bone. OP mainly affects postmenopausal women and elderly people resulting in hip and vertebral fracture. [2][3][4][5] Bisphosphonates, denosumab, and PTH analogs have been applied during the past few decades, which are inhibitors of bone resorption or stimulators of bone formation. 6 Besides this, many kinds of traditional Chinese medicine have been applied proverbially and have a significant effect on treating OP. Icariin (ICA, C 33 H 40 O 15 , molecular weight: 676.67) is a natural flavonoid glycoside isolated from Herba Epimedii, J Cell Biochem. 2019;120:13121-13132.wileyonlinelibrary.com/journal/jcb
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.