Activated fibroblast-like synoviocytes (FLSs) play a central role in the formation of synovial pannus and joint destruction in rheumatoid arthritis (RA). Targeting FLSs could be a potential therapeutic strategy. The objective of this study is to explore the role of c-Jun N-terminal kinase (JNK) in proliferation, migration and invasion of FLSs promoted by the sonic hedeghog (SHH) signaling pathway in patients with RA. Activation of SHH signaling was evaluated by real-time PCR and Western Blot. Levels of phosphorylation of JNK and c-Jun were detected by Western Blot. FLSs proliferation was quantified by Cell Counting Kit-8 (CCK-8) assay and flow cytometry. Cell migration and invasion were assessed by wound healing assay and Transwell chamber assay. Invasiveness of FLSs in vivo was evaluated using a humanized synovitis animal model. We observed that treatment of SHH agonist (SAG) significantly increased the levels of phosphorylation of JNK and c-Jun, while SHH antagonist (cyclopamine) significantly decreased the expression of phospho-JNK and phospho-c-Jun in FLSs. The elevated level of phospho-c-Jun stimulated by SAG was decreased in the presence of JNK inhibitor (SP600125) ( P < 0.001). FLSs proliferation, migration and invasion were promoted by SHH agonist ( P < 0.05). However, the enhanced aggressiveness of FLSs was abolished in the presence of JNK inhibitor ( P < 0.05). In vivo study showed that the invasion of FLSs into cartilage was increased by SHH overexpression and the excessive invasiveness was inhibited by blockade of JNK signaling ( P < 0.01). These results suggest that JNK is one of the downstream molecules mediating the effect of SHH signaling in FLSs. These findings indicate that SHH-JNK signaling could be a potential therapeutic target to suppress the aggressiveness of FLSs and prevent articular damage of RA.
ObjectiveMacrophages function as key orchestrators in the pathogenesis of acute lung injury (ALI). The current study sets out to investigate the molecular mechanism of transforming growth factor-β (TGFβ1) in the regulation of M1 alveolar macrophage polarization in ALI by modulating DNA methyltransferase 1 (DNMT1), along with the microRNA (miR)-124/Pellino 1 (PELI1)/interferon regulatory factor 5 (IRF5) axis.MethodsFirst, ALI mouse models were established, and the proportion of M1 and M2 macrophages in mouse lung tissues was detected using flow cytometry. The targeting relationship between miR-124 and PELI1 was verified with the help of a dual luciferase gene reporter assay. Following TGFβ1 knockdown, RT-qPCR and Western blot assay were performed to analyze the expression patterns of TGFβ1, DNMT1, miR-124, and PELI1 and M1/M2 polarization markers in the lung tissues of ALI mice. Immunofluorescence was further employed to detect nuclear translocation of IRF5 in macrophages.ResultsThe polarization of M1 macrophages was found to be positively correlated with the severity of lung injury. TGFβ1, DNMT1, PELI1 were highly expressed, while miR-124 was down-regulated in ALI mice, and IRF5 was primarily distributed in the nucleus. TGFβ1 promoted the polarization of M1 alveolar macrophages by up-regulating DNMT1. Furthermore, DNMT1 down-regulated the expression of miR-124, which led to enhancement of M1 alveolar macrophage polarization. Meanwhile, over-expression of miR-124 inhibited the nuclear translocation of IRF5 and suppressed M1 alveolar macrophage polarization. On the other hand, over-expression of PELI1 reversed the above trends.ConclusionCollectively, our findings indicated that TGFβ1 can promote the expression of DNMT1, which down-regulates miR-124 to activate PELI1 and nuclear translocation of IRF5, thereby aggravating ALI in mice.
Currently, the potential role of the alterations occurring in the liver immune system and intestinal flora in liver injury remains unknown. Our study aimed to explore the impacts of intestinal microbial barrier damage induced by ceftriaxone on liver immunity. We developed the BALB/c mice model by administering ceftriaxone. The intestinal microbial barrier damage was observed by 16S rDNA, and the pathological changes of intestines and livers were detected by H&E or transmission electron microscope. The activation of immunocytes were tested by Flow Cytometry; the expression of LPS, ALT, AST, IL-6 and TNF-α were detected by Limulus Test or ELISA. Compared to the control, the intestinal microbes significantly decreased in ceftriaxone group. Additionally, the weight of cecum contents increased, the intestinal wall became thinner, and the villus in the small intestine and cecum were damaged. The expression of LPS and the ratio of liver lymphocytes were significantly increased. H&E results indicated the structures of liver arose the pathologic changes. Meanwhile, the content of serum ALT, AST, IL-6 and TNF-α increased. Collectively, our study indicates that the damages of gut microbial barrier induced by ceftriaxone prompted activation of immunocytes and release of inflammatory cytokines, which may lead to chronic inflammation in liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.