Carbon sandwich: When a pyrrole‐containing surfactant is polymerized between layers of silica (see picture; pyrrole is red), subsequent carbonization and removal of the silica template yields large, pure, single‐layer graphene sheets. The procedure, which employs mild conditions, is controllable and can be used to produce micrometer‐sized graphene sheets on a gram scale.
The essence of the path planning problems is multi-modality constraint. However, most of the current literature has not mentioned this issue. This paper introduces the research progress of path planning based on the multi-modality constraint. The path planning of multi-modality constraint research can be classified into three stages in terms of its basic ingredients (such as shape, kinematics and dynamics et al.): Route Planning, Trajectory Planning and Motion Planning. It then reviews the research methods and classical algorithms, especially those applied to the Unmanned Surface Vehicle (USV) in every stage. Finally, the paper points out some existing problems in every stage and suggestions for future research.
On the basis of the combination of colloidal and mesophase templating, as well as molecular imprinting, a general and effective approach for the preparation of hierarchically structured trimodal porous silica films was developed. With this new methodology, controlled formation of well-defined pore structures not only on macro- and mesoscale but also on microscale can be achieved, affording a new class of hierarchical porous materials with molecular recognition capability. As a demonstration, TNT was chosen as template molecule and hierarchically imprinted porous films were successfully fabricated, which show excellent sensing properties in terms of sensitivity, selectivity, stability, and regeneracy. The pore system reported here combines the multiple benefits arising from all length scales of pore size and simultaneously possesses a series of distinct properties such as high pore volume, large surface area, molecular selectivity, and rapid mass transport. Therefore, our described strategy and the resulting pore systems should hold great promise for various applications not only in chemical sensors, but also in catalysis, separation, adsorption, or electrode materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.