The structure of floating rafts-equipped vessels will be inevitably undermined due to application of large-scale designs. When encountering strong external disturbances, not only the rafts will deviate from the original balanced position but also greater elastic deformation will be generated, which may lead to the relative displacement between devices on rafts and endanger the operation safety of equipment. In this study, a class of raft elastic deformation monitoring and discrimination methods is put forward via analyzing the features of large-scale raft elastic deformation. Air springs layout is optimized through finite element method (FEM). A flexible raft control responding model is established and a novel raft elastic deformation suppression technique is proposed based on air spring pressure parameter identification that adjusts the air spring pressure distribution. The experimental results indicate that this technique can effectively control the attitude of the rafts and reduce elastic deformation, leading to a largely improved control precision and a faster convergence speed of the raft.
Two-stage mounting systems applied in ships are expected to be light in weight, compact in installation space, and efficient in vibration isolation performance at the same time, which largely increases the engineering complexity. In this paper, analytical models of a two-stage mounting system with flexible and rigid intermediate mass are proposed to compare the vibration isolation effectiveness (VIE) performance and the influences of system parameters with the rigid intermediate mass on VIE are introduced. Based on the analysis results, an integrated adjustable two-stage mounting module is designed. Compared to the traditional floating raft mounting system with flexible intermediate mass, this two-stage mounting module can be arranged in a more compact structure space with greatly reduced size and weight. Furthermore, a novel modular mounting system prototype is proposed and manufactured based on several two-stage mounting modules and real-time behavior monitoring and controlling subsystem. The testing results verify the compatibility of the module design and the behavior monitoring and controlling system. The modular mounting system also exhibits excellent VIE performance combined with the advantage of compact intermediate mass size, lightweight, and automatic behavior monitoring and controlling.
Machinery mounting system is one of the most significant vibration and noise attenuation technology for marine mechanical equipment. A novel intelligent mounting system having distributed intermediate mass light in weight, intelligent in function and small in installation space is presented. The performance of the novel distributed mounting system is analysed using a simplified but efficient theoretical model. The influences of system designing parameters including weight of intermediate mass, stiffness of isolators and mechanical impedance of foundation on vibration isolation efficiency are analysed. A scale experimental prototype was established to verify the accuracy of theoretical analysis. Conclusions of theoretical and experimental analysis reveal that stiffness of isolators should be chosen as small as possible under the premise of stability of system. The intermediate mass should be chosen within a reasonable range based on the index requested on isolation efficiency because substantial increase on intermediate mass will not lead to substantial increase on vibration isolation efficiency which is different from conventional methods to obtain considerable isolation efficiency. And intelligent safety mechanism designed to ensure the ultimate operation safety of equipment was introduced. The novel intelligent mounting system is qualified with the need of practical projects on vibration isolation efficiency and reliability standard, providing a new way for vibration engineer to choose when making mounting plan for marine machinery equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.