The spindle assembly checkpoint (SAC) ensures the fidelity of chromosome segregation during mitosis. Here, we show that ULK1, a serine/threonine kinase that plays a key role in initiation of autophagy, also has an important function in the activation of SAC. ULK1 phosphorylates the SAC protein Mad1 at Ser546 to recruit Mad1 to kinetochores. Furthermore, Rod/ZW10/Zwilch (RZZ) complex may serve as a receptor for phos-Ser546-Mad1 at kinetochore, since phosphorylation of Mad1 by ULK1 strengthens the interaction between Mad1 and RZZ complex. In addition, deletion of ULK1 increases chromosome instability and cytotoxicity of paclitaxel, resulting in significant impairment of cancer cell growth. These findings highlight the role of ULK1 as a protein kinase controlling the fidelity of chromosome segregation and cell-cycle progression.
As adjuvants or antigens, bacterial membranes have been widely used in recent antibacterial and antitumor research, but they are often injected multiple times to achieve therapeutic outcomes, with limitations in biosafety and clinical application. Herein, we leverage the biocompatibility and immune activation capacity of Salmonella strain VNP20009 to produce double-layered membrane vesicles (DMVs) for enhanced systemic safety and antitumor immunity. Considering the photothermal effect of polydopamine upon irradiation, VNP20009-derived DMVs are prepared to coat the surface of mesoporous polydopamine (MPD) nanoparticles, leading to the potential synergies between photothermal therapy mediated by MPD and immunotherapy magnified by DMVs. The single dose of MPD@DMV can passively target tumors and activate the immune system with upregulated T cell infiltration and secretion levels of pro-inflammatory factors as well as antitumor related cytokines. All of these promoted immune responses result in malignant melanoma tumor regression and extended survival time on local or distant tumor-bearing mouse models. Importantly, we further explore the advantages of intravenous injection of the MPD@DMV agent compared with its intratumoral injection, and the former demonstrates better long-term immune effects on animal bodies. Overall, this formulation design brings broader prospects for the autologous vaccine adjuvant by bacterial membrane vesicles in cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.