To reveal the mechanical characteristics and damage evolution mechanism of limestone in the bending process, the cumulative acoustic emission (AE) hits were used to define the damage variable, and the rock microbody hypothesis and the Weibull distribution function were applied to further improve the damage variable. Meanwhile, the bending damage constitutive model of limestone under three-point bending was developed based on the Lemaitre strain equivalence principle and the continuum damage theory. Then, the three-point bending test with acoustic emission monitoring was carried out to verify the rationality and validity of the model. Results showed that the modified damage variable D had an exponential distribution with the strain ε, and the damage was mainly concentrated in the macrocrack propagation stage. Moreover, the bending neutral layer moved towards the compressive zone in the bending damage process. The bending neutral layer, furthermore, moved slowly a small distance at the initial stage of bending fracture but moved fast a long distance at the end stage of bending fracture. In addition, the bending damage constitutive model could be quantitatively expressed by the cumulative AE hits Np, the stress σ, the strain ε, and Young’s modulus E. The theoretical stress-strain model curves agreed well with experimental results, which demonstrated that the proposed model could capture the damage evolution of limestone reasonably in the bending process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.