As a fundamental preprocessing of various multimedia applications, object proposal aims to detect the candidate windows possibly containing arbitrary objects in images with two typical strategies, window scoring and grouping. In this paper, we first analyze the feasibility of improving object proposal performance by integrating window scoring and grouping strategies. Then, we propose a novel object proposal method for RGB-D images, named elastic edge boxes. The initial bounding boxes of candidate object regions are efficiently generated by edge boxes, and further adjusted by grouping the super-pixels within elastic range to obtain more accurate candidate windows. To validate the proposed method, we construct the largest RGB-D image data set NJU1800 for object proposal with balanced object number distribution. The experimental results show that our method can effectively and efficiently generate the candidate windows of object regions and it outperforms the state-of-the-art methods considering both accuracy and efficiency.
Steganographer detection aims to identify the guilty user who utilizes steganographic methods to hide secret information in the spread of multimedia data, especially image data, from a large amount of innocent users on social networks. A true embedding probability map illustrates the probability distribution of embedding secret information in the corresponding images by specific steganographic methods and settings, which has been successfully used as the guidance for content-adaptive steganographic and steganalytic methods. Unfortunately, in real-world situation, the detailed steganographic settings adopted by the guilty user cannot be known in advance. It thus becomes necessary to propose an automatic embedding probability estimation method. In this article, we propose a novel content-adaptive steganographer detection method via embedding probability estimation. The embedding probability estimation is first formulated as a learning-based saliency detection problem and the multi-scale estimated map is then integrated into the CNN to extract steganalytic features. Finally, the guilty user is detected via an efficient Gaussian vote method with the extracted steganalytic features. The experimental results prove that the proposed method is superior to the state-of-the-art methods in both spatial and frequency domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.