This study was aimed at preparing orally administered naringenin-loaded liposome for pharmacokinetic and tissue distribution studies in animal models. The liposomal system, consisting of phospholipid, cholesterol, sodium cholate, and isopropyl myristate, was prepared using the thin-film hydration method. Physicochemical characterization of naringenin-loaded liposome such as particle size, zeta potential, and encapsulation efficiency produced 70.53 ± 1.71 nm, -37.4 ± 7.3 mV, and 72.2 ± 0.8%, respectively. The in vitro release profile of naringenin from the formulation in three different media (HCl solution, pH 1.2; acetate buffer solution, pH 4.5; phosphate buffer solution, pH 6.8) was significantly higher than the free drug. The in vivo studies also revealed an increase in AUC of the naringenin-loaded liposome from 16648.48 to 223754.0 ng·mL h as compared with the free naringenin. Thus, approximately 13.44-fold increase in relative bioavailability was observed in mice after oral administration. The tissue distribution further showed that the formulation was very predominant in the liver. These findings therefore indicated that the liposomal formulation significantly improved the solubility and oral bioavailability of naringenin, thus leading to wider clinical applications.
We have demonstrated that a typical nanothermometer was incorporated in a bovine serum albumin stabilized gold nanostar-indocyanine green (denoted as GNS-ICG-BSA) nanoprobe to realize surface-enhanced Raman scattering (SERS) imaging-based real-time sensitive monitoring of intracellular temperature in photothermal therapy (PTT), which significantly improved the spatial resolution compared to infrared thermal imaging. Herein, an exogenous thermosensitive molecule, ICG, acting as a tri-functional agent, was selected as the Raman reporter instead of direct cellular biochemical changes. The triggering of the obtained probe was unaffected by the cellular microenvironment, so it can act as a monitor of PTT in various cell types. High-resolution mass spectrometry (HRMS) was used to investigate the thermosensitive mechanism of ICG. The actively targeted GNS-ICG-BSA nanotags were used to induce SERS mapping-guided in vitro PTT of U87 glioma cells. Meanwhile, small temperature variations within a cell during PTT can be precisely monitored through the SERS fingerprint information, with a spatial resolution at the subcellular level and a sensitivity of 0.37 °C. Thus, the integrated GNS-ICG-BSA nanotags can be treated as a theranostic probe, a SERS imaging probe and an intracellular thermometer. Moreover, the good biocompatibility and the low cytotoxicity of GNS-ICG-BSA nanotags, together with their superior photothermal ablation effect on U87 glioma cells have been confirmed. This suggested that the implanted nanothermometry approach would be promising for a better understanding of the biological processes at subcellular level and provide new insights into the fabrication of a multifunctional nanoplatform. Furthermore, this study revealed that the SERS-based monitoring technique can offer great potential for theranostics as an emerging strategy.
The PLGA nanoparticles serve as a promising carrier for the poorly soluble ergosterol and significantly improve its bioavailability, biodistribution and in vitro anti-tumor activities.
Background: Diffuse large B-cell lymphoma (DLBCL) is a common aggressive B-cell non-Hodgkin lymphoma (B-NHL). While combined chemotherapy has improved the outcomes of DLBCL, it remains a highly detrimental disease. Pyroptosis, an inflammatory programmed cell death, is considered to have both tumor-promoting and tumor-suppressing effects. The role of pyroptosis in DLBCL has been gradually appreciated, but its value needs further investigation.Methods: We analyzed mutations and copy number variation (CNV) alterations of pyroptosis-related genes (PRGs) from The Cancer Genome Atlas (TCGA) cohort and evaluated the differences in expression in normal B cells and DLBCL patients in two Gene Expression Omnibus (GEO) datasets (GSE12195 and GSE56315). Based on the expression of 52 PRGs, we divided 421 DLBCL patients from the GSE31312 dataset into distinct clusters using consensus clustering. The Kaplan-Meier method was used to prognosis among the three clusters, and GSVA was used to explore differences in the biological functions. ESTIMATE and single-sample gene-set enrichment analysis (ssGSEA) were used to analyze the tumor immune microenvironment (TME) in different clusters. A risk score signature was developed using a univariate survival analysis and multivariate regression analysis, and the reliability and validity of the signature were verified. By combining the signature with clinical factors, a nomogram was established to predict the prognosis of DLBCL patients. The alluvial diagram and correlation matrix were used to explore the relationship between pyroptosis risk score, clinical features and TME.Results: A large proportion of PRGs are dysregulated in DLBCL and associated with the prognosis. We found three distinct pyroptosis-related clusters (cluster A, B, and C) that differed significantly with regard to the prognosis, biological process, clinical characteristics, chemotherapeutic drug sensitivity, and TME. Furthermore, we developed a risk score signature that effectively differentiates high and low-risk patients. The nomogram combining this signature with several clinical indicators showed an excellent ability to predict the prognosis of DCBCL patients.Conclusions: This work demonstrates that pyroptosis plays an important role in the diversity and complexity of the TME in DLBCL. The risk signature of pyroptosis is a promising predictive tool. A correct and comprehensive assessment of the mode of action of pyroptosis in individuals will help guide more effective treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.