In this paper, the tangential zone of cartilage is introduced into the fiber-reinforced model of articular cartilage. Considering the distribution content of the main fiber and the secondary fiber in the tangential layer of cartilage, the permeability and fiber stiffness of the layer are set in parallel and perpendicular directions, respectively, to more accurately reflect the mechanical behavior of cartilage. The parameters are set to reflect the mechanical behavior of the cartilage more realistically. We use a modified articular cartilage model to simulate the mechanical properties of implanted cartilage with different elastic modulus. The simulation results show that the selection of implants with different elastic modulus will affect the repair of cartilage. Appropriately increasing the elastic modulus of implanted cartilage, can increase the bearing capacity of the repaired area and reduce the stress concentration at the junction. The elastic modulus of the implant should be moderate, not too large or too small, and the damage of stress concentration on the repair surface should be considered. Through simulation, the mechanical state of the repaired cartilage under pressure can be obtained comprehensively, which provides a theoretical basis for clinical pathology.
It has great guiding significance for the prevention of osteoarthritis and the mechanical state of cartilage after tissue engineering repair to study the relationship between the mechanical properties of cartilage and its structure. This paper considered both the consideration of the solid phase, liquid phase, fiber-reinforced phase in the cartilage and the influence of the contents of major fibers and minor fibers near the cartilage surface. Based on these, a tangential zone of cartilage was established, and a certain improvement and optimization of the fiber-reinforced porous elastic model was performed. The Abaqus software and the Fortran language were used to complete simulation. Simulation results were compared with experiment’s results to verify the validity of the model. Finally, the model was used to perform finite element analysis of different degrees of repairable depth under sliding conditions. Several results were obtained. When the indenter is farther from the interface at the repair site, the mechanical changes in the cartilage are relatively stable. The contact stress of the tangential layer repair and the full-layer repair is small. The volume fraction of the liquid phase in the tangential layer and the full layer repair is lower than that in the other layer regions. The liquid flow rate and the Von Mises stress at the junction of the tangential layer repair are very high. Simulation results were used to explore differences in cartilage mechanical properties of different repairable depths, so as to select the best repairable depth for cartilage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.