We developed a novel class of hybrids (HP-1a-HP-1f) of telmisartan and 2-(1-hydroxypentyl)-benzoate (HPBA) as a ring-opening derivative of NBP. The most promising hybrid, HP-1c, exhibited more potent anti-inflammatory and neuroprotective effects in vitro and reduced brain infarct volume and improved neurological deficits in a rat model of transient focal cerebral ischemia when compared with telmisartan alone, NBP alone, or a combination of telmisartan and NBP. HP-1c had a therapeutic window of up to 24 h, ameliorated ischemic cerebral injury in permanent focal cerebral ischemia, and improved motor function. The beneficial effects of HP-1c in ischemic stroke were associated with microglial polarization to the M2 phenotype and reduced oxidative stress. HP-1c also shifted the M1/M2 polarization in a mouse neuroinflammatory model. The anti-inflammatory and anti-oxidative effects of HP-1c were associated with AMPK-Nrf2 pathway activation for neuroprotection. We showed that HP-1c penetrates the brain, has a plasma half-life of around 3.93 h, and has no toxicity in mice. Innovation and Conclusion: Our study results suggest that HP-1c, with dual AMPK- and Nrf2-activating properties, may have potential in further studies as a novel therapy for ischemic stroke. Antioxid. Redox Signal. 28, 141-163.
SummaryBIOMED-2 polymerase chain reaction (PCR) assays for clonality analysis of immunoglobulin (IG) and T-cell receptor (TCR) gene rearrangements were evaluated in routine haematopathological practice where paraffin-embedded tissues constitute the majority of specimens. One hundred and twenty-five fresh/frozen and 316 paraffin specimens were analysed for DNA quality and clonality. Seventy-nine per cent of paraffin specimens yielded PCR products of over 300 bp. These specimens and all fresh/frozen specimens were analysed with the complete set of BIOMED-2 reactions for IG (8 reactions) and/or TCR (6 reactions) gene rearrangements. The rate of detection of clonality was 96% in mature B-cell neoplasms and 98% in mature T-cell neoplasms and there were no significant differences in these rates between paraffin and fresh/ frozen specimens. As the value of sole use of any individual BIOMED-2 reaction in clonality detection was limited, we assessed combinations of reactions that gave the greatest sensitivity with fewest reactions and were applicable for both fresh/frozen and paraffin specimens. For IG gene rearrangements, three reactions combining one targeting the IG heavy chain framework-2 region and two targeting the IG kappa locus achieved a 91% detection rate. For TCR gene rearrangements, the two TCR gamma reactions gave a 94% detection rate. We therefore recommend this strategy as the firstline assays for routine B-and T-cell clonality analysis in diagnostic haematopathology.
Podocytes are critical components of the selective filtration barrier of the glomerulus and are susceptible to oxidative damage. For investigation of the role of oxidative stress and podocyte damage in diabetic nephropathy, transgenic mice that overexpress the antioxidant protein metallothionein (MT) specifically in podocytes (Nmt mice) were produced. MT expression was increased six-and 18-fold in glomeruli of two independent lines of Nmt mice, and podocyte-specific overexpression was confirmed. Glomerular morphology and urinary albumin excretion were normal in Nmt mice. OVE26 transgenic mice, a previously reported model of diabetic nephropathy, were crossed with Nmt mice to determine whether an antioxidant transgene targeted to podocytes could reduce diabetic nephropathy. Double-transgenic OVE26Nmt mice developed diabetes similar to OVE26 mice, but MT overexpression reduced podocyte damage, indicated by more podocytes, less glomerular cell death, and higher density of podocyte foot processes. In addition, expansion of glomerular and mesangial volume were significantly less in OVE26Nmt mice compared with OVE26 mice. Four-month-old OVE26Nmt mice had a 70 to 90% reduction in 24-h albumin excretion, but this protection does not seem to be permanent. These results provide evidence for the role of oxidative damage to the podocyte in diabetic mice and show that protection of the podocyte can reduce or delay primary features of diabetic nephropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.