Light-absorbing impurities (LAIs) in surface snow and snow pits together with LAIs’ concentrations and their impacts on albedo reduction and sequent radiative forcing (RF) have been investigated in the past. Here, we focused on temporal–spatial distributions of LAIs, especially on the albedo reduction and radiative forcing caused by the LAIs in Urumqi Glacier No.1. Various snow samples, including fresh snow, aged snow, and granular ice were collected between 3,770 and 4,105 m a.s.l of Urumqi Glacier No.1 during the snowmelt season of 2015. For the surface snow samples, BC and OC concentrations were 582 and 1,590 ng g−1, respectively. Mineral dust (MD) concentrations were 110 μg g−1. Due to the different ablation status of the glacier surface, LAIs accumulate at the lower altitude of the glacier. The estimation by the Snow, Ice, and Aerosol Radiative (SNICAR) model indicated that BC and MD could reduce the albedo by 12.8 and 10.3% in fresh snow, aged snow by 23.3 and 5.9%, and granular ice by 22.4 and 26.7%, respectively. The RF of MD was higher than that of BC in fresh snow and granular ice, whereas the RF of BC exceeded MD in aged snow. These findings suggested that BC was the main forcing factor in snow melting and dust was the main forcing factor in accelerating glacier melt.
Bacterioplankton are essential components of riverine ecosystems. However, the mechanisms (deterministic or stochastic processes) and co-occurrence networks by which these communities respond to anthropogenic disturbances are not well understood. Here, we integrated niche-neutrality dynamic balancing and co-occurrence network analysis to investigate the dispersal dynamics of bacterioplankton communities along human activity intensity gradients. Results showed that the lower reaches (where intensity of human activity is high) had an increased composition of bacterioplankton communities which induced strong increases in bacterioplankton diversity. Human activity intensity changes influenced bacterioplankton community assembly via regulation of the deterministic-stochastic balance, with deterministic processes more important as human activity increases. Bacterioplankton molecular ecological network stability and robustness were higher on average in the upper reaches (where there is lower intensity of human activity), but a human activity intensity increase of about 10%/10% can reduce co-occurrence network stability of bacterioplankton communities by an average of 0.62%/0.42% in the dry and wet season, respectively. In addition, water chemistry (especially NO3–-N and Cl–) contributed more to explaining community assembly (especially the composition) than geographic distance and land use in the dry season, while the bacterioplankton community (especially the bacterioplankton network) was more influenced by distance (especially the length of rivers and dendritic streams) and land use (especially forest regions) in the wet season. Our research provides a new perspective of community assembly in rivers and important insights into future research on environmental monitoring and classified management of aquatic ecosystems under the influence of human activity.
BackgroundFine particulate matter (PM2.5), one of the major atmospheric pollutants, has a significant impact on human health. However, the determinant power of natural and socioeconomic factors on the spatial-temporal variation of PM2.5 pollution is controversial in China.MethodsIn this study, we explored spatial-temporal characteristics and driving factors of PM2.5 through 252 prefecture-level cities in China from 2015 to 2019, based on the spatial autocorrelation and geographically and temporally weighted regression model (GTWR).ResultsPM2.5 concentrations showed a significant downward trend, with a decline rate of 3.58 μg m−3 a−1, and a 26.49% decrease in 2019 compared to 2015, Eastern and Central China were the two regions with the highest PM2.5 concentrations. The driving force of socioeconomic factors on PM2.5 concentrations was slightly higher than that of natural factors. Population density had a positive significant driving effect on PM2.5 concentrations, and precipitation was the negative main driving factor. The two main driving factors (population density and precipitation) showed that the driving capability in northern region was stronger than that in southern China. North China and Central China were the regions of largest decline, and the reason for the PM2.5 decline might be the transition from a high environmental pollution-based industrial economy to a resource-clean high-tech economy since the implementation the Air Pollution Prevention and Control Action Plan in 2013.ConclusionWe need to fully consider the coordinated development of population size and local environmental carrying capacity in terms of control of PM2.5 concentrations in the future. This research is helpful for policy-makers to understand the distribution characteristics of PM2.5 emission and put forward effective policy to alleviate haze pollution.
Precipitation is an important natural resource relating to regional sustainability in arid central Asia, and the stable oxygen and hydrogen isotopes provide useful tracers to understand precipitation processes. In this study, we collected the hourly meteorological data at several stations on the southern slope of the Altai Mountains in arid central Asia, from March 2017 to June 2022, and examined the diurnal impact of below-cloud evaporation on stable isotope compositions of precipitation. During nighttime, the changes in isotope compositions below cloud base are generally weak. The enhanced impact of below-cloud evaporation can be found after around 15:00, and the impact is relatively strong in the afternoon, especially from 18:00 to 22:00. Summer and spring usually have a larger impact of below-cloud evaporation than autumn, and the winter precipitation is generally not influenced by below-cloud evaporation. On an annual basis, the differences in evaporation-led isotope changes between daytime and nighttime are 1.1‰ for stable oxygen isotope compositions, 4.0‰ for stable hydrogen isotope compositions and 4.7‰ for deuterium excess. The period from 2:00 to 10:00 shows relatively low sensitivity to relative humidity, and from 14:00 to 22:00 the impacts are sensitive. Considering the fluctuations of precipitation isotope compositions, the impact of below-cloud evaporation does not greatly modify the seasonal environmental signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.