Seven equimolar, five-component, metal diborides were fabricated via high-energy ball milling and spark plasma sintering. Six of them, including (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2, (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, (Hf0.2Zr0.2Mo0.2Nb0.2Ti0.2)B2, (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2, (Mo0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2, and (Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2, possess virtually one solid-solution boride phase of the hexagonal AlB2 structure. Revised Hume-Rothery size-difference factors are used to rationalize the formation of high-entropy solid solutions in these metal diborides. Greater than 92% of the theoretical densities have been generally achieved with largely uniform compositions from nanoscale to microscale. Aberration-corrected scanning transmission electron microscopy (AC STEM), with high-angle annular dark-field and annular bright-field (HAADF and ABF) imaging and nanoscale compositional mapping, has been conducted to confirm the formation of 2-D high-entropy metal layers, separated by rigid 2-D boron nets, without any detectable layered segregation along the c-axis. These materials represent a new type of ultra-high temperature ceramics (UHTCs) as well as a new class of high-entropy materials, which not only exemplify the first high-entropy non-oxide ceramics (borides) fabricated but also possess a unique non-cubic (hexagonal) and layered (quasi-2D) high-entropy crystal structure that markedly differs from all those reported in prior studies. Initial property assessments show that both the hardness and the oxidation resistance of these high-entropy metal diborides are generally higher/better than the average performances of five individual metal diborides made by identical fabrication processing.
DC flash sintering of both pure and 0.5 mol. % Bi 2 O 3 -doped ZnO at a relatively high activating field of 300 V/cm has been investigated. It is demonstrated that even high-purity ZnO single crystals can "flash" at ~870 C. In comparison, flash sintering occurs at a substantially lower onset temperature of ~550 C in ZnO powder specimens, indicating the important roles of surfaces and/or grain boundaries. A model has been developed to forecast the thermal runaway conditions and the predictions are in excellent agreements with the observed onset flash temperatures, attesting that the flash starts as a thermal runaway in at least these ZnO based systems. Interestingly, enhanced grain growth is observed at the anode side of the pure ZnO specimens with an abrupt change in the grain sizes, indicating the occurrence of electricpotential-induced abnormal grain growth. With a large current density, the growth of aligned hexagonal single-crystalline rods toward the anode direction is evident in the ZnO powder specimen. Moreover, Bi 2 O 3 doping defers the onset of flash sintering, which can be explained from the formation of space charges at grain boundaries, and it homogenizes the microstructure due to a liquid-phase sintering effect. The key scientific contributions of this study include the development of a model to predict the thermal runaway conditions that are coincident with the observed onset flash sintering temperatures, the clarification of how flash starts in ZnO based specimens, and the observation and explanation of diversifying phenomena of sintering and microstructural development under applied electric currents.
a b s t r a c tThe eutectic temperature and composition of the TiO 2 -CuO system were carefully measured to be 1010 ± 10 C and 83CuO:17TiO 2 , respectively. Subsequently, a TiO 2 -CuO phase diagram was computed, representing a correction and major improvement from the phase diagram available in literature. Dilatometry measurements and isothermal sintering experiments unequivocally demonstrated the activated (enhanced) sintering of TiO 2 with the addition of CuO, occurring at as low as >300 C below the eutectic temperature. High resolution transmission electron microscopy (HRTEM) characterization of waterquenched specimens revealed the formation of nanometer-thick, liquid-like, intergranular films (IGFs), a type of grain boundary (GB) complexion (a.k.a. 2-D interfacial phase), concurrently with accelerated densification and well below the bulk eutectic temperature. Consequently, activated sintering is explained from the enhanced mass transport in this premelting-like complexion. An interfacial thermodynamic model was used to quantitatively explain and justify the stabilization of liquid-like IGFs below the eutectic temperature and the temperature-dependent IGF thicknesses measured by HRTEM. A GB l diagram was computed, for the first time for a ceramic system, to represent the thermodynamic tendency for general GBs in CuO-doped TiO 2 to disorder.
The properties of materials change, sometimes catastrophically, as alloying elements and impurities accumulate preferentially at grain boundaries. Studies of bicrystals show that regular atomic patterns often arise as a result of this solute segregation at high-symmetry boundaries, but it is not known whether superstructures exist at general grain boundaries in polycrystals. In bismuth-doped polycrystalline nickel, we found that ordered, segregation-induced grain boundary superstructures occur at randomly selected general grain boundaries, and that these reconstructions are driven by the orientation of the terminating grain surfaces rather than by lattice matching between grains. This discovery shows that adsorbate-induced superstructures are not limited to special grain boundaries but may exist at a variety of general grain boundaries, and hence they can affect the performance of polycrystalline engineering alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.