In the past few years, introducing ontology to describe the concepts and relationships between different entities in semantic sensor network enhances the interoperability between entities. Existing works mostly based on SPARQL retrieval ignore the user’s specific requirements of sensor attributes. Therefore, the recommendation results cannot satisfy the user’s needs. In this article, we propose a graph-based sensor recommendation model. The model mainly includes two parts: (1) Filtering nodes in data graph. In addition to using the traditional graph matching algorithm, we propose a threshold pruning algorithm to narrow the matching scope and improve the matching efficiency. (2) Recommending top- k sensors. We use the improved fast non-dominated sorting algorithm to obtain the local optimal solutions of sensor data set, and we apply the simple additive weight algorithm to characterize and sort local optional solutions. Finally, we recommend the top- k sensors to the user. By comparison, the graph-based sensor recommendation algorithm meets user’s needs more than other algorithms, and experiments show that our model outperforms several baselines in terms of both response time and precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.