Chlorpyrifos (CPF) is one of the most widely used organophosphorous insecticides. There are links between CPF exposure and neurological disorders. Mitochondrial damage has been implicated to play a key role in CPF-induced neurotoxicity. Mitophagy, the selective autophagic elimination of mitochondria, is an important mitochondrial quality control mechanism. However, the role of mitophagy in CPF-induced neurotoxicity remains unclear. In this study, CPF-caused mitochondrial damage, role and mechanism of mitophagy on CPF-induced neuroapoptosis were extensively studied by using SH-SY5Y cells. We showed that CPF treatment caused mitochondrial fragmentation, excessive ROS generation and mitochondrial depolarization, thus led to cell apoptosis. Moreover, CPF treatment also resulted in increased colocalizaton of mitochondria with LC3, decreased levels of mitochondrial proteins, PINK1 stabilization and mitochondrial accumulation of Parkin. These data suggested that CPF treatment induced PINK1/Parkin-mediated mitophagy in SH-SY5Y cells. Furthermore, knockdown of Parkin dramatically increased CPF-induced neuroapoptosis. On the other hand, overexpression of Parkin markedly alleviated CPF-induced SH-SY5Y cell apoptosis. Together, these findings implicate a protective role of PINK1/Parkin-mediated mitophagy against neuroapoptosis and that enhancing mitophagy provides a potential therapeutic strategy for CPF-induced neurological disorders.
Increasing epidemiological and toxicological evidence suggests that pesticides and other environmental exposures may be associated with the development of Parkinson's disease (PD). Chlorpyrifos (CPF) is a widely used organophosphorous pesticide with developmental neurotoxicity. Its neurotoxicity, notably on the monoamine system, suggests that exposure of CPF may induce dopaminergic neuronal injury. We investigated whether neonatal exposure to CPF contributes to initiation and progression of dopaminergic neurotoxicity and explored the possible underlying mechanisms. The newborn rats were administrated 5 mg/kg CPF subcutaneously from postnatal day (PND) 11 to PND 14 daily. The effect of CPF on dopaminergic neurons, microglia, astrocyte, nuclear factor-κB (NF-κB) p. 65 and p. 38 mitogen-activated protein kinase (MAPK) signaling pathways was analyzed in the substantia nigra of rats at 12h, 24h, 72 h, 16d and 46 d after exposure. CPF-treated rats exhibited significant reduction of dopaminergic neurons at 16d and 46 d after exposure, and a significant increase in the expression of microglia and astrocytes in the substantia nigra after CPF exposure. Intense activation of NF-κB p. 65 and p. 38 MAPK inflammatory signaling pathways was observed. Our findings indicate that neonatal exposure to CPF may induce long-term dopaminergic neuronal damage in the substantia nigra mediated by the activation of inflammatory response via NF-κB p. 65 and p. 38 MAPK pathways in the nigrostriatal system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.