Question generation, the task of automatically creating questions that can be answered by a certain span of text within a given passage, is important for question-answering and conversational systems in digital assistants such as Alexa, Cortana, Google Assistant and Siri. Recent sequence to sequence neural models have outperformed previous rule-based systems. Existing models mainly focused on using one or two sentences as the input. Long text has posed challenges for sequence to sequence neural models in question generation-worse performances were reported if using the whole paragraph (with multiple sentences) as the input. In reality, however, it often requires the whole paragraph as context in order to generate high quality questions. In this paper, we propose a maxout pointer mechanism with gated self-attention encoder to address the challenges of processing long text inputs for question generation. With sentence-level inputs, our model outperforms previous approaches with either sentence-level or paragraph-level inputs. Furthermore, our model can effectively utilize paragraphs as inputs, pushing the state-of-the-art result from 13.9 to 16.3 (BLEU 4).
Growing environmental concerns regarding the use of heavy metals in coating formulations have lead to a new coating strategy employing inherently conducting polymers (ICPs), such as polyaniline (PANI), as a key component. The principal potential advantage offered by the ICP coating technology is toleration of pinholes and minor scratches. This paper describes the application of the scanning reference electrode technique (SRET) to the study of PANI coatings on carbon steel. SRET results demonstrate that conductive PANI "passivates" pinhole defects in coatings on carbon steel. In addition, it is shown that phosphonic acid salts of PANI are more effective for corrosion protection than sulfonic acid salts. A model is proposed which entails passivation of the metal surface through anodization of the metal by PANI and formation of an insoluble iron-dopant salt at the metal surface.
Weeds are one of the most important factors affecting agricultural production. The waste and pollution of farmland ecological environment caused by full-coverage chemical herbicide spraying are becoming increasingly evident. With the continuous improvement in the agricultural production level, accurately distinguishing crops from weeds and achieving precise spraying only for weeds are important. However, precise spraying depends on accurately identifying and locating weeds and crops. In recent years, some scholars have used various computer vision methods to achieve this purpose. This review elaborates the two aspects of using traditional image-processing methods and deep learning-based methods to solve weed detection problems. It provides an overview of various methods for weed detection in recent years, analyzes the advantages and disadvantages of existing methods, and introduces several related plant leaves, weed datasets, and weeding machinery. Lastly, the problems and difficulties of the existing weed detection methods are analyzed, and the development trend of future research is prospected.
The comprehensive intelligent development of the manufacturing industry puts forward new requirements for the quality inspection of industrial products. This paper summarizes the current research status of machine learning methods in surface defect detection, a key part in the quality inspection of industrial products. First, according to the use of surface features, the application of traditional machine vision surface defect detection methods in industrial product surface defect detection is summarized from three aspects: texture features, color features, and shape features. Secondly, the research status of industrial product surface defect detection based on deep learning technology in recent years is discussed from three aspects: supervised method, unsupervised method, and weak supervised method. Then, the common key problems and their solutions in industrial surface defect detection are systematically summarized; the key problems include real-time problem, small sample problem, small target problem, unbalanced sample problem. Lastly, the commonly used datasets of industrial surface defects in recent years are more comprehensively summarized, and the latest research methods on the MVTec AD dataset are compared, so as to provide some reference for the further research and development of industrial surface defect detection technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.