Self-assembled monolayers (or SAMs) created from monoreactive perfluoroalkylsilanes by deposition from a toluene solution are investigated for the dependence of their quality on processing conditions. Surface-sensitive spectroscopic techniques are used to provide feedback on the processing conditions in which solution temperature, silane concentration, and reaction time are optimized to improve the quality of these SAMs. For these analyses, monolayers are formed at 20, 40, 60, or 80 °C from solutions containing between 0.5 and 5 mM perfluoroalkylsilane over a period of up to 5 h. Physically adsorbed molecules are removed from these surfaces by extraction to determine the quality of the covalently bound monolayer. Water contact angle measurements, spectroscopic ellipsometry, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), respectively, are used in combination to assess the uniformity of the surface hydrophobicity, monolayer thickness, composition of the assembled perfluoroalkylsilane molecules, and topography of these monolayers. A comparison is also presented for two approaches to fill defects within these solvent extracted monolayers with more perfluoroalkylsilane molecules, aiming to improve the quality of these SAMs. A detailed XPS analysis is used to assess both the relative changes in density and average tilt of molecules within the monolayers as the process temperature is increased in increments from 20 to 80 °C. The observed differences in quality of the SAMs are attributed to temperature- and time-dependent organization and reactivity of the silane molecules. Although the assembly of these monoreactive perfluoroalkylsilanes is driven by thermodynamics, the quality of the monolayer is ultimately limited by the kinetics and mass transport during this assembly process. Lessons from these studies can be exploited for improving the quality of monolayers composed of other alkylsilane molecules that are covalently bound to the surfaces of oxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.