While it has been known that wave breaking and bubble generation at high wind speeds enhance air‐sea carbon dioxide (CO2) exchange rates (F), quantification of their contribution at the global scale remains a formidable challenge. There is urgency to make progress on this issue as a significant uptick in both magnitude and frequency of high wind events (HW) has been documented over the last 3 decades. Using a wind‐wave dependent expression for gas transfer velocity (k) that explicitly considers bubbles and a widely used wind‐only parameterization, the spatial pattern of k at high winds can be explained by sea surface temperature distribution. The HW, which represent some 3% of wind conditions, contribute disproportionally to the global F (18%) with an increasing trend. Approximately 50% of the global F at high winds is attributed to bubble contribution. The findings are of significance to quantifying CO2 transfer to the ocean interior.
The global air‐sea CO2 flux (F) impacts and is impacted by a plethora of climate‐related processes operating at multiple time scales. In bulk mass transfer formulations, F is driven by physico‐ and bio‐chemical factors such as the air‐sea partial pressure difference (∆pCO2), gas transfer velocity, sea surface temperature, and salinity–all varying at multiple time scales. To de‐convolve the impact of these factors on variability in F at different time scales, time‐resolved estimates of F were computed using a global data set assembled between 1988 and 2015. The F anomalies were defined as temporal deviations from the 28‐year time‐averaged value. Spectral analysis revealed four dominant timescales of variability in F–subseasonal, seasonal, interannual, and decadal with relative amplitude differences varying across regions. A second‐order Taylor series expansion was then conducted along these four timescales to separate drivers across differing regions. The analysis showed that on subseasonal timescales, wind speed variability explains some 66% of the global F anomaly and is the dominant driver. On seasonal, interannual, and decadal timescales, the ∆pCO2 effect controlled by the ∆pCO2 anomaly, explained much of the F anomaly. On decadal timescales, the F anomaly was almost entirely governed by the ∆pCO2 effect with large contributions from high latitudes. The main drivers across timescales also dominate the regional F anomaly, particularly in the mid‐high latitude regions. Finally, the driver of the ∆pCO2 effect was closely connected with the relative strength of atmospheric pCO2 and the nonthermal component of oceanic pCO2 anomaly associated with dissolved inorganic carbon and alkalinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.