Time-lapse (TL) seismic monitoring plays a vital role in reservoir characterization and management. Elastic fullwaveform inversion (EFWI) has been applied to time-lapse seismic data to allow for a quantitative estimation of time-varying elastic properties. However, the high-resolution inversion can be computationally intense and ill-posed. To estimate the highresolution time-lapse changes at a reasonable cost, we utilize two key techniques for the inversion: 1) we develop an elastic redatuming approach to retrieve the virtual elastic data for both base and monitor data at the target level using mainly a kinematically accurate velocity, thus, reducing the computational cost by focusing the high-resolution inversion on the target zone; 2) We integrate high-resolution well information and seismic data in the target-oriented inversion, where a high-resolution prior model is predicted by deep learning to regularize the inversion. A deep neural network (DNN) is capable of learning the mappings between the time-lapse seismic estimation and the facies interpreted from well information after the training process. Thus, we can derive a prior model for time-lapse changes by mapping the facies characterized by the property changes to the target inversion domain. We then implement the targetoriented TLEFWI regularized by the prior model, where the redatumed time-lapse elastic data and the prior model jointly contributes to the inversion result. The numerical examples validate that the proposed approach enables us to retrieve the time-lapse changes of elastic property in the target zone with improved resolution and well consistency.
The high-resolution waveform inversion for seismic velocities is gaining increasing interest as we start to deal with complex structures. Although full waveform inversion has been used for several years, obtaining high-resolution velocity models still presents many obstacles, such as the high computational cost and the limited band width of the data. Thus, we propose a deep learning-based algorithm to build high-resolution velocity models using low-resolution velocity models, migration images, and welllog velocities as inputs. The well information, specifically, helps enhance the resolution with ground truth information, especially around the well. These three inputs are fed to an improved neural network, a variant of U-Net, as three channels to predict the corresponding true velocity models, which serve as labels in the training. The incorporation of well velocities from several locations is crucial for improving the resolution of the output model. Numerical experiments on complex models demonstrate the robust performance of this network and the crucial role that well information plays, especially in generalizing the approach to models that differ from the trained ones and achieving superior performance compared to full waveform inversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.