Pyrites are widely distributed in marine sediments, the morphology of which is applied as a proxy to infer the redox conditions of bottom water, and identify diagenetic stages and hydrocarbon leakage activities. In this review, the methods used for the morphological study of pyrite are summarized. The textural and size characteristics of euhedral pyrite and pyrite aggregates, as the formation and evolution mechanism of pyrite are discussed for their significance in reconstructing the geochemical environment. The morphological study of pyrite includes shape observation, size estimation, and surface feature analysis. Scanning electron microscope and optical microscope are the main methods for morphological observation; transmission electron microscope and scanning tunneling microscope are applicable to observe nanoscale morphological structures and crystal growth on the crystal surface, and X-ray computed tomography is capable of measuring pyrite size distribution at the scale of a micrometer. Under the marine sedimentary condition, the single crystal of pyrite appears in cube, octahedron, dodecahedron, and their intermediates, the size of which ranges from several nanometers to more than 100 µm. The morphology of euhedral pyrite is controlled by temperature, pH, the chemical composition of interstitial water, etc., and might have been experienced in later reformation processes. The pyrite aggregates occur as framboid, rod-like, fossil-infilling, etc., characterized by the comparatively large size of several microns to several millimeters. It is found that certain textures correspond with different formation mechanisms and geochemical environments. Particularly, under special geological conditions, for instance, the methane leakage and/or decomposition of gas hydrate, pyrite is anomaly enriched with morphological textures of massive framboid cluster, rod-like aggregates, etc., and framboid is found with a large mean diameter (>20 µm) and standard deviation (>10 µm). These typical features can be employed to ascertain the position of the paleo sulfate methane transition zone (SMTZ).
Rock-Eval pyrolysis and the biomarker composition of organic matter were systematically studied in hydrate-bearing sediments from the Shenhu area, South China Sea. The n-alkane distribution patterns revealed that the organic matter in the sediments appeared to originate from mixed sources of marine autochthonous input, terrestrial higher plants, and ancient reworked organic matter. The low total organic carbon contents (average < 0.5%) and the low hydrogen index (HI, <80 mg HC/g TOC) suggested the poor hydrocarbon-generation potential of the deposited organic matter at a surrounding temperature of <20 °C in unconsolidated sediments. The abnormally high production index and the fossil-originated unresolved complex mixture (UCM) accompanied by sterane and hopane of high maturity indicated the contribution of deep hydrocarbon reservoirs. Preliminary oil-to-source correlation for the extracts implied that the allochthonous hydrocarbons in the W01B and W02B sediments might have originated from the terrestrial source rocks of mature Enping and Wenchang formations, while those of W03B seem to be derived from more reduced and immature marine source rocks such as the Zhuhai formation. The results of the organic extracts supported the previous identification of source rocks based on the isotopic composition of C2+ hydrate-bound gases. The biomarker of methanogens, squalane, was recognized in the sediments of this study, possibly suggesting the generation of secondary microbial gases which are coupled with the biodegradation of the deep allochthonous hydrocarbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.