Wheat (Triticum aestivum L) production on the Huang-Huai Plain of China has substantially affected in the past 50 years as a result of the decreasing total solar radiation and sunshine hours. Potassium has a significant effect on improving leaf photosynthesis ability under stress conditions. Five potassium application rates (K), 0 (K0), 50 (K50), 100 (K100), 150 (K150), and 250 (K250) mg K 2 O kg -1 soil, combined with two shading levels, no shading (NS) and shading at early filling stage for 10 days (SE), were used to investigate the effects of K application on winter wheat growth under SE condition. Under NS condition, the parameters related to chlorophyll fluorescence characteristics, dry matter productivity and grain yields reached the maximum values at a middle K application rate (100 mg K 2 O kg -1 soil). Shading stress significantly reduced leaf SPAD value, showed negative effects on chlorophyll fluorescence characteristics and reduced grain yield of winter wheat. However, as the result of the interaction of K×S, compared to NS condition, higher K application rate (150 mg and 250 K 2 O kg -1 soil) was beneficial in terms of achieving a higher grain yield of winter wheat under SE by improving leaf SPAD value, alleviating the damage of SE on the winter wheat photosynthetic system, and increasing fructan content and dry matter translocation percentage.
Crassocephalum crepidioides is an African orphan crop that is used as a leafy vegetable and medicinal plant. Although it is of high regional importance in Sub-Saharan Africa, the plant is still mainly collected from the wild and therefore efforts are made to promote its domestication. However, in addition to beneficial properties, there was first evidence that C. crepidioides can accumulate the highly toxic pyrrolizidine alkaloid (PA) jacobine and here it was investigated, how jacobine production is controlled. Using ecotypes from Africa and Asia that were characterized in terms of their PA profiles, it is shown that the tetraploid C. crepidioides forms jacobine, an ability that its diploid close relative Crassocephalum rubens appears to lack. Evidence is provided that nitrogen (N) deficiency strongly increases jacobine in the leaves of C. crepidioides, that this capacity depends more strongly on the shoot than the root system, and that homospermidine synthase (HSS) activity is not rate-limiting for this reaction. A characterization of HSS gene representation and transcription showed that C. crepidioides and C. rubens possess two functional versions, one of which is conserved, that the HSS transcript is mainly present in roots and that its abundance is not controlled by N deficiency. In summary, this work improves our understanding of how environmental cues impact PA biosynthesis in plants and provides a basis for the development of PA-free C. crepidioides cultivars, which will aid its domestication and safe use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.