In this study, the effects of the addition of L-carnitine in in vitro maturation (IVM) medium for bovine oocytes on their nuclear maturation and cryopreservation were investigated; they were matured in IVM medium supplemented with 0.0, 0.3, 0.6 and 1.2 mg/mL of L-carnitine (control, 0.3, 0.6 and 1.2 groups, respectively) and some of them were vitrified by Cryotop. Moreover, the effects of L-carnitine during in vitro fertilization (IVF) and in vitro culture (IVC) on the developmental potential and quality of IVF embryos were also examined. A significantly higher maturation rate of oocytes was obtained for 0.3 and 0.6 mg/mL groups compared with the control (P < 0.05). The blastocyst formation rate in the 0.6 group was significantly improved, whereas the rate in the 1.2 group was significantly decreased when compared with the control group (P < 0.05). No significant difference was found in embryo development between the control and the L-carnitine group after oocyte vitrification. Supplementation of IVF and IVC media with L-carnitine had no effect on development to the blastocyst stage of IVM oocytes treated with 0.6 mg/mL L-carnitine. In conclusion, the supplementation of L-carnitine during IVM of bovine oocytes improved their nuclear maturation and subsequent embryo development after IVF, but when they were vitrified the improving effects were neutralized.
The aim of the present study was to compare the efficiency of the solid surface (SSV), cryotop (CT) vitrification methods and cytochalasin B (CB) pretreatment for cryopreservation of immature buffalo oocytes. Cumulus-oocyte complexes (COCs) were placed for 1 min in TCM199 containing 10% dimethylsulfoxide (DMSO), 10% ethylene glycol (EG), and 20% fetal bovine serum, and then transferred for 30 s to base medium containing 20% DMSO, 20% EG and 0.5 mol/L sucrose. CB pretreated ((+)CB) or non-pretreated ((-)CB) COCs were vitrified either by SSV or CT. Surviving vitrified COCs were selected for in vitro maturation (IVM) and in vitro fertilization (IVF). The rate of viable oocytes after vitrification in CT groups (82%) was significantly lower (P < 0.05) than that in a fresh control group (100%), but significantly higher (P < 0.05) than those in SSV groups (71-72%). Among vitrified groups, the highest maturation rate was obtained in the CT (-)CB group (32%). After IVF, the cleavage and blastocyst formation rates were similar among vitrified groups but significantly lower than those of the control group. In conclusion, a higher survival rate of oocytes after vitrification and IVM was obtained in the CT group compared with that in the SSV group, indicating the superiority of the CT method. Pretreatment with CB did not increase the viability, maturation or embryo development of vitrified oocytes.
In the present study, we aimed to determine the applicability of a paper container for the vitrification of in vitro matured (IVM) bovine oocytes. In experiment 1, IVM oocytes were exposed to vitrification solution (20% dimethylsulfoxide (DMSO), 20% ethylene glycol (EG), and 5 mol/L sucrose), using a two-step method, for 30 s; loaded onto either a paper container or Cryotop; and stored in liquid nitrogen. No significant difference (P < 0.05) in the survival and blastocyst formation rates after in vitro vitrification was observed between the paper container and Cryotop. In experiment 2, IVM oocytes were exposed to either a two- or three-step vitrification solution. The three-step vitrification solution was not significantly different from the two-step solution in terms of oocyte survival, cleavage and blastocyst rates. In experiment 3, in vitro produced blastocysts were graded according to the manual of the International Embryo Transfer Society (grades 1 and 2) and vitrified using the two- and three-step methods. For grade 2 blastocysts, the three-step method showed significantly higher (P < 0.05) survival and hatched blastocyst rates than the two-step method, whereas for grade 1 blastocysts, no significant difference was observed. In conclusion, the paper device and three-step technique are suitable for oocytes and embryo vitrification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.