This paper presents a concise overview of ash deposition in combustion or co-firing of biomass (woody biomass, agricultural residues, peat, etc.) with other fuels for power/heat generation. In this article, the following five research aspects on biomass combustion ash deposition are reviewed and discussed: influence of biomass fuel characteristics, deposit-related challenges, ash deposition monitoring and analysis of ash deposits, mechanisms and chemistry of fly ash deposition, and key technologies for reducing ash deposition and corrosion in biomass-involved combustion.
Black shank incited by Phytophthora nicotianae is a devastating disease in the production of tobacco. Fungicides have been commonly used for managing the disease; however, there is only a narrow pool of effective fungicides. A few new fungicides became available in recent years, including fluopicolide, mandipropamid, and oxathiapiprolin, which reduced diseases incited by oomycetes under field conditions. Limited information is available regarding sensitivity of P. nicotianae isolates to these new fungicides. Research was conducted to determine effects of the three new fungicides on P. nicotianae isolates from tobacco in Georgia. Studies with 106 isolates indicated that they did not grow when agar medium was amended with the fungicides at the rate of 1 μg/ml. Twenty isolates were used for in vitro studies to determine sensitivity to the fungicides. Fluopicolide, mandipropamid, and oxathiapiprolin inhibited mycelial growth of the isolates with mean EC50 values (effective concentrations that provide 50% growth reduction) of 0.09, 0.04, and 0.001 μg/ml, respectively. EC50 values of fluopicolide, mandipropamid, and oxathiapiprolin for inhibiting sporangial formation were 0.15, 0.03, and 0.0002 μg/ml, respectively. EC50 values for suppressing zoospore germination averaged 0.16, 0.04, and 0.002 μg/ml for fluopicolide, mandipropamid, and oxathiapiprolin, respectively. Results from the study indicated that P. nicotianae isolates from tobacco in Georgia were sensitive to the fungicides, with lower EC50 for oxathiapiprolin than for fluopicolide and mandipropamid. The information on effectiveness and baseline sensitivity of fungicides on P. nicotianae will facilitate monitoring of resistance development in the pathogen population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.