Semiconductor-based photocatalysis is considered to be an attractive way for solving the worldwide energy shortage and environmental pollution issues. Since the pioneering work in 2009 on graphitic carbon nitride (g-C3N4) for visible-light photocatalytic water splitting, g-C3N4 -based photocatalysis has become a very hot research topic. This review summarizes the recent progress regarding the design and preparation of g-C3N4 -based photocatalysts, including the fabrication and nanostructure design of pristine g-C3N4 , bandgap engineering through atomic-level doping and molecular-level modification, and the preparation of g-C3N4 -based semiconductor composites. Also, the photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal cocatalysts, and Z-scheme heterojunctions. Finally, the concluding remarks are presented and some perspectives regarding the future development of g-C3N4 -based photocatalysts are highlighted.
Graphene, a single layer of graphite, possesses a unique two-dimensional structure, high conductivity, superior electron mobility and extremely high specific surface area, and can be produced on a large scale at low cost. Thus, it has been regarded as an important component for making various functional composite materials. Especially, graphene-based semiconductor photocatalysts have attracted extensive attention because of their usefulness in environmental and energy applications. This critical review summarizes the recent progress in the design and fabrication of graphene-based semiconductor photocatalysts via various strategies including in situ growth, solution mixing, hydrothermal and/or solvothermal methods. Furthermore, the photocatalytic properties of the resulting graphene-based composite systems are also discussed in relation to the environmental and energy applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation and photocatalytic disinfection. This critical review ends with a summary and some perspectives on the challenges and new directions in this emerging area of research (158 references).
The production of clean and renewable hydrogen through water splitting using photocatalysts has received much attention due to the increasing global energy crises. In this study, a high efficiency of the photocatalytic H(2) production was achieved using graphene nanosheets decorated with CdS clusters as visible-light-driven photocatalysts. The materials were prepared by a solvothermal method in which graphene oxide (GO) served as the support and cadmium acetate (Cd(Ac)(2)) as the CdS precursor. These nanosized composites reach a high H(2)-production rate of 1.12 mmol h(-1) (about 4.87 times higher than that of pure CdS nanoparticles) at graphene content of 1.0 wt % and Pt 0.5 wt % under visible-light irradiation and an apparent quantum efficiency (QE) of 22.5% at wavelength of 420 nm. This high photocatalytic H(2)-production activity is attributed predominantly to the presence of graphene, which serves as an electron collector and transporter to efficiently lengthen the lifetime of the photogenerated charge carriers from CdS nanoparticles. This work highlights the potential application of graphene-based materials in the field of energy conversion.
The production of H(2) by photocatalytic water splitting has attracted a lot attention as a clean and renewable solar H(2) generation system. Despite tremendous efforts, the present great challenge in materials science is to develop highly active photocatalysts for splitting of water at low cost. Here we report a new composite material consisting of TiO(2) nanocrystals grown in the presence of a layered MoS(2)/graphene hybrid as a high-performance photocatalyst for H(2) evolution. This composite material was prepared by a two-step simple hydrothermal process using sodium molybdate, thiourea, and graphene oxide as precursors of the MoS(2)/graphene hybrid and tetrabutylorthotitanate as the titanium precursor. Even without a noble-metal cocatalyst, the TiO(2)/MoS(2)/graphene composite reaches a high H(2) production rate of 165.3 μmol h(-1) when the content of the MoS(2)/graphene cocatalyst is 0.5 wt % and the content of graphene in this cocatalyst is 5.0 wt %, and the apparent quantum efficiency reaches 9.7% at 365 nm. This unusual photocatalytic activity arises from the positive synergetic effect between the MoS(2) and graphene components in this hybrid cocatalyst, which serve as an electron collector and a source of active adsorption sites, respectively. This study presents an inexpensive photocatalyst for energy conversion to achieve highly efficient H(2) evolution without noble metals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.